TEACHERS FORUM ${ }^{\circledR}$

 QUESTION BANK (solved)

KERALA STATE

+2 MATHEMATICS

CONTENTS

Board Question Paper with Solutions - 2023 March 005-011

1. RELATIONS AND FUNCTIONS 012-029
2. INVERSE TRIGONOMETRIC FUNCTIONS 030-042
3. MATRICES 043-057
4. DETERMINANTS 058-075
5. CONTINUITY AND DIFFERENTIABILITY 076-095
6. APPLICATION OF DERIVATIVES 096-117
7. INTEGRALS 118-137
8. APPLICATION OF INTEGRALS 138-152
9. DIFFERENTIAL EQUATIONS 153-173
10. VECTOR ALGEBRA 174-190
11. THREE DIMENSIONAL GEOMETRY 191-208
12. LINEAR PROGRAMMING 209-223
13. PROBABILITY 224-242

RELATIONS AND FUNCTIONS

PREVIOUS YEARS' QUESTIONS AND ANSWERS

1. Which of the following relations on $A=\{1,2,3\}$ is an equivalence relation ?
(a) $\{(1,1),(2,2),(3,3)\}$
(b) $\{(1,1),(2,2),(3,3),(1,2)\}$
(c) $\{(1,1),(3,3),(1,3),(3,1)\}$
(d) None of these
(2022)

Ans. (a) $\{(1,1),(2,2),(3,3)\}$
22. $\mathrm{R}=\{(x, \mathrm{y}): x, \mathrm{y} \notin \mathrm{Z},(x-\mathrm{y})$ is an integer $\}$. Show that R is an equivalence relation

Ans. For any $\mathrm{a} \in \mathrm{Z}, \mathrm{a}-\mathrm{a}=0$ is an integer.
(2022)

Therefore R is reflexive.
Difference between two integers is also an integer.
That is if $x-y$ is an integer ,then $y-x$ is an integer. So R is symmetric.
if $x-y$, and $y-z$ are integers, then $x-z$ is also an integer. So R is transitive.
Therefore R is an equivalence relation.
2. If * is a binary operation on R defined by $a * b=\frac{a b}{3}$
(a) Find the identity element of *.
(b) Find the inverse of 3.

Ans.(a) Let e be the identity element of a.
Then $\mathrm{a} * \mathrm{e}=\mathrm{e}$ * $\mathrm{a}=\mathrm{a}$
$a^{*} e=a \Rightarrow \frac{a e}{3}=a \Rightarrow e=3$
(b) Let a^{-1} be the inverse of a.

Then a^{-1} * $\mathrm{a}=\mathrm{a}^{*} \mathrm{a}^{-1}=\mathrm{e}$
$a^{*} a^{-1}=e \Rightarrow \frac{a \cdot a^{-1}}{3}=3 a^{-1}=\frac{9}{a}$
inverse of 3 is, $3^{-1}=\frac{9}{3}=3$
3. (a) Discuss the continuity of the function
$f(x)=\left\{\begin{array}{lc}3 x+1, & \text { if } x \leq 3 \\ x^{2}+1, & \text { if } x>3\end{array}\right.$
(b) Verify Rolle's theorem for the function $\mathrm{f}(x)=2 x^{2}-12 x+1$ in $[2,4]$.
(2022)

Ans. (a) LHL $=\lim _{x+3}(3 x+1)=10$
$\mathrm{RHL}=\lim _{x+3}\left(x^{2}+1\right)=10$
$\mathrm{f}(3)=10$
$\mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(x)$
Therefore $\mathrm{f}(x)$ is continuous .
(b) $\mathrm{f}(x)$ is continuous on $[2,4]$
$\mathrm{f}(x)$ is differentiable on $(2,4)$
$f(a)=f(2)=-15$
$f(b)=f(4)=-15$
here $f(a)=f(b)$
$\mathrm{f}^{\prime}(x)=4 \mathrm{x}-12$
$f^{\prime}(c)=0 \Rightarrow 4 c-12=0$
$\Rightarrow c=3 \in(2,4)$ Hence verified.
4. (i) Let R be a relation on a set $A=\{1,2,3\}$, defined by $R=\{(1,1),(2,2),(3,3),(1,3)\}$. Then the ordered pair to be added to R to make it a smallest equivalence relation is
\qquad .
(a) $(2,1)$
(b) $(3,1)$
(c) $(1,2)$
(d) $(1,3)$
(ii) Determine whether the relation R in the set $\mathrm{A}=\{1,2,3,4,5,6\}$ as $\mathrm{R}=\{(x, y): y$ is divisible by $x\}$ is reflexive, symmetric and transitive.
(2021)

Ans. (i) (b) $(3,1)$
(ii) $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2$, 4), $(2,6),(3,6)\}$
$(a, a) \in R$ for all $a \in A$.
$\therefore \mathrm{R}$ is reflexive
$(1,2) \in R$ but $(2,1) \notin R$.
$\therefore \mathrm{R}$ is not symmetric
If $(a, b) \in R$ and $(b, c) \in R$.
then $(a, c) \in R$ for $a \in A$
$\therefore \mathrm{R}$ is transitive.
$\therefore \mathrm{R}$ is reflexive and transitive but not symmetric.
5. (i) Let $\mathrm{f}:\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ be given by $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down go f.
(ii) Consider $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(x)=2 x+1$. Show that f is invertible.

Find the inverse of f.
(2021)

Ans. (i) $\operatorname{gof}(1)=g(f(1))=g(2)=3$

$$
\begin{aligned}
& \operatorname{gof}(3)=g(f(3))=g(5)=1 \\
& \operatorname{gof}(4)=g(f(4))=g(1)=3
\end{aligned}
$$

(ii)

$$
\text { Let } \begin{aligned}
y & =2 x+1 \\
2 x & =y-1 \\
x & =\frac{y-1}{2}
\end{aligned}
$$

g is the inverse of f if,

$$
\mathrm{fog}=\mathrm{gof}
$$

Let $g(x)=\frac{x-1}{2}$
$\mathrm{fog}(x)=\mathrm{f}(\mathrm{g}(x))=\mathrm{f}\left(\frac{x-1}{2}\right)=2\left(\frac{x-1}{2}\right)+1=x-1+1=x$
gof $(x)=\mathrm{gf}((x))=\mathrm{g}(2 x+1)=\frac{2 x+1-1}{2}=\frac{2 x}{2}=x$
$\operatorname{gof}(x)=\operatorname{fog}(x)=x$.
$\therefore \mathrm{f}$ is invertible
$\therefore \mathrm{f}^{1}(x)=\frac{x-1}{2}$
6. (i) Let R be a relation in the set N of natural numbers given by $R=\{(a, b): a=b-2\}$. Choose the correct answer.
(a) $(2,3) \in R$
(b) $(3,8) \in R$
(c) $(6,8) \in R$
(d) $(8,7) \in R$
(ii) Let * be a binary operation defined on the set Z of integers $a * b=a+b+1$. Then find the identity element.
(2020)

Ans. (i) $(\mathrm{c})(6,8) \in \mathrm{R}$
(ii) $a * e=a$

$$
\begin{aligned}
& a+e+1=a \\
& e+1
\end{aligned}=0 \Rightarrow e=-1
$$

7. Let $\mathrm{A}=\mathbf{R}-\{3\}$ and $\mathrm{B}: \mathbf{R}-\{1\}$. Consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(x)=\frac{x-2}{x-3}$

$$
\text { (i) Is } f \text { one-one and onto? Justify your answer. }
$$

(ii) Is it invertible? Why?
(iii) If invertible, find inverse of $f(x)$

Ans. (i) $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3}$
$\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{2}-2\right)\left(x_{1}-3\right)$
$x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-2 x_{1}-3 x_{2}+6$
$-3 x_{1}-2 x_{2}=-2 x_{1}-3 x_{2}$
$-3 x_{1}+2 x_{1}=2 x_{2}-3 x_{2}$
$\Rightarrow \quad-x_{1}=-x_{2}$
$\Rightarrow \quad x_{1}=x_{2} \therefore f$ is one - one.
Now $y=\frac{x-2}{x-3}$

$y x-3 y$	$=x-2$
$(y-1) x$	$=3 y-2$

$x=\frac{3 y-2}{y-1} \in \mathrm{~A} \quad \therefore f$ is onto
(ii) Yes. Because it is bijective.
(iii) $f^{-1}(x)=\frac{3 x-2}{x-1}$
8. (a) If $\mathrm{f}(x)=\sin x, \mathrm{~g}(x)=x^{2}, x \in \mathrm{R}$; then find (fog) (x)
(2019)
(b) Let u and v be two functions defined on $\left[\mathrm{R}\right.$ as $\mathrm{u}(x): 2 x-3$ and $\mathrm{v}(x)=\frac{3+x}{2}$ that u and v are inverse to each other.

Ans. (a) $\mathrm{f}(x)=\sin x, \mathrm{~g}(x)=x^{2}$
$(\mathrm{fog})(x)=\mathrm{f}(\mathrm{g}(x))=\mathrm{f}\left(x^{2}\right)=\sin x^{2}$
(b) (u.v) $x=\mathrm{u}(\mathrm{v}(x))=\mathrm{u}\left(\frac{3+x}{2}\right)=2\left(\frac{3+x}{2}\right)-3=x$
(c) $(\mathrm{v} . \mathrm{u}) x=\mathrm{v}(\mathrm{u}(x))=\mathrm{v}(2 x-3)=\left(\frac{3+2 x-3}{2}\right)=x$
9. (a) The function P is defined as "To each person on the earth is assigned a date of birth". Is this function one-one? Give reason.
(2019)
(b) Consider the function, $\mathrm{f}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathrm{R}$
given by $\mathrm{f}(x)=\sin x$ and $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathrm{R}$
given by $\mathrm{g}(x)=\cos x$.
(i) Show that f and g are one-one functions.
(ii) Is $f+g$ one - one? Why?
(c) The number of one-one functions from a set containing 2 elements to a set containing 3 elements is \qquad -.
(i) 2
(ii) 3
(iii) 6
(iv) 8

Ans. (a) Not One - One
Because different persons have same birthday.
(b) $\mathrm{f}(x)=\sin x$
(i) $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right) \Rightarrow \sin x_{1}=\sin x_{2}$
$\Rightarrow \quad x_{1} \quad=x_{2} \quad \Rightarrow \mathrm{f}$ is One-One
$\mathrm{g}(x)=\cos x$
$\mathrm{g}\left(x_{1}\right)=\mathrm{g}\left(x_{2}\right) \Rightarrow \cos x_{1}=\cos x_{2}$
$\Rightarrow x_{1}=x_{2} \quad \Rightarrow \mathrm{~g}$ is One-One
(ii) $(\mathrm{f}+\mathrm{g})(x)=\sin x+\cos x$
$(\mathrm{f}+\mathrm{g})\left(x_{1}\right)=(\mathrm{f}+\mathrm{g})\left(x_{2}\right)$
$\Rightarrow \sin x_{1}+\cos x_{1}=\sin x_{2}+\cos x_{2}$
$\Rightarrow \sin x_{1}-\sin x_{2}=\cos x_{2}-\cos x_{1}$
$\Rightarrow x_{1}=x_{2} \Rightarrow \mathrm{~g}$ is One-One
$\Rightarrow \quad \cos \frac{x_{1}+x_{2}}{2}=\sin \frac{x_{1}+x_{2}}{2}$.
$\Rightarrow \quad x_{1}=\frac{\pi}{2}-x_{2}$
$\Rightarrow \quad \mathrm{f}+\mathrm{g}$ is not one-one
(c) (iii) 6
10. If $f(x)=\frac{x}{x-1}, x \neq 1$
(a) Find fof (x)
(b) Find the inverse of f.
(2018)

Ans. (a) $\quad f(x)=\frac{x}{x-1}, x \neq 1$

$$
\text { fof }(x)=f\left(\frac{x}{x-1}\right)=\frac{\frac{x}{x-1}}{\frac{x}{x-1}-1}=\frac{\frac{x}{x-1}}{\frac{x-x+1}{x-1}}=\frac{x}{1}=x
$$

(b)

Since fof $(x)=x$

$$
f^{-1}=\frac{y}{y-1}, y \neq 1
$$

11. Let $A=N \times N$ and '*' be a binary operation on A defined by $(a, b)^{*}(c, d)=(a+c, b+d)$
(a) Find $(1,2)$ * $(2,3)$
(b) Prove that '*' is commutative. (c) Prove that '*'is associative.

Ans. (a)

$$
\begin{aligned}
& (a, b)^{*}(c, d)=(a+c, b+d) \\
& (1,2)^{*}(2,3)=(1+2,2+3)=(3,5)
\end{aligned}
$$

(b)
$(a, b)^{*}(c, d)=(a+c, b+d)$
$(c, d) *(a, b)=(c+a, d+b)=(a+c, b+d)$
\Rightarrow * is commutative
(c) $\quad(a, b)^{*}\left[(c, d)^{*}(e, f)\right]=(a, b)^{*}[(c+d),(d+f)]=(a+c+e, b+d+f)$

$$
\begin{array}{ll}
{\left[(a, b)^{*}(c, d)^{*}(e, f)\right.} & \left.=(a+c, b+d)^{*}(e, f)\right] \quad=(a+c+e, b+d+f) \\
(a, b)^{*}\left[(c, d)^{*}(e, f)\right] & =\left[(a, b)^{*}(c, d)\right] *(e, f)
\end{array}
$$

\therefore * is associative
12. (a) Let R be a relation defined on $A=\{1,2,3\}$ by $R=\{(1,3),(3,1),(2,3)\} R$ is
a. Reflexive
b. Symmetric
c. Transitive
d. Reflexive but not transitive
(b) Find fog and gof if $\mathrm{f}(x)=|x+1|$ and $\mathrm{g}(x)=2 x-1$.
(c) Let * be a binary operation defined on $\mathrm{N} \times \mathrm{N}$ by
$(a, b) *(c, d)=(a+c, b+d)$.
Find the identity element for * if it exists.
Ans. (a) Symmetric
(b) fog $=f(g(x))=f(2 x-1)=|2 x-1+1|=|2 x|=2 x$
gof $=g(f(x))=g(|x+1|)=2|x+1|-1$
(c) Let (e, f) be the identity function.

$$
\text { then }(a, b)^{*}(e, f)=(a+e, b+f)
$$

For identify function $a+e \Rightarrow e=0$

$$
\text { and } b+f=b \Rightarrow f=0
$$

Identify element does not exist.
13. (a) If $\mathrm{R}=\{(x, y): x, y \in \mathrm{Z}, x-y \in \mathbf{Z}\}$, then the relation R is
(i) Reflexive but not transitive
(ii) Reflexive but not symmetric
(iii) Symmetric but not transitive
(iv) an Equivalence relation
(b) Let * be a binary operation on the set Q of rational numbers by $a^{*} b=2 a+b$.

Find 2 * (3 * 4) and (2 * 3) * 4
(c) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two one-one functions. Check whether go f is oneone or not.
(2017)

Ans. (a) (iv) an Equivalence relation
(b) 2 * $(3$ * 4$)=2 *(2 \times 3+4)=2 * 10=2 \times 2+10=14$
$(2 * 3)^{*} 4=(2 \times 2+3) * 4=7 * 4=2 \times 7+4=18$
(c) $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$
$\Rightarrow \mathrm{g}\left[f\left(x_{1}\right)\right]=\mathrm{g}\left[f\left(x_{2}\right)\right]$
$\Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \quad x_{1}=x_{2} \quad \Rightarrow$ gof is one-one.
14. (a) The function given $f: \mathrm{N} \rightarrow \mathrm{N}$, by $f(x)=2 x$ is
(i) one-one and onto
(ii) one-one but not onto
(iii) not one-one and not onto
(iv) onto, but not one-one
(b) Find $\mathrm{gof}(x)$, if $f(x)=8 x^{3}$ and $\mathrm{g}(x)=x^{1 / 3}$
(c) Let $*$ be an operation such that $a * b=\operatorname{LCM}$ of a and b defined on the set $A=\{1,2,3,4,5\}$. Is $*$ binary operation? Justify your answer.
(2016)

Ans. (a) (ii) f is one-one but not onto.
(b) $g \circ f(x)=\mathrm{g}(f(x))=\mathrm{g}\left(8 x^{3}\right)=\left(8 x^{3}\right)^{1 / 3}=2 x$
(c)

$$
\begin{aligned}
& a * b=\operatorname{LCM}(a, b) \\
& 2 * 3=\operatorname{LCM}(2,3)=6 \notin A \\
& 5 * 2=\operatorname{LCM}(5,2)=10 \notin A
\end{aligned}
$$

So * is not a binary operation.
15. (a) If $f: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=x^{2}$ and $\mathrm{g}(x)=x+1$, then $\mathrm{gof}(x)$ is
(i) $(x+1)^{2}$
(ii) $x^{3}+1$
(iii) $x^{2}+1$
(iv) $x+1$
(2016)
(b) Consider the function $f: \mathrm{N} \rightarrow \mathrm{N}$, given by $f(x)=x^{3}$. Sow that the function f is injective but not surjective.
(c) The given table shown an operation * on A $\{p, q\}$

$*$	p	q
p	p	q
q	p	q

(i) Is * a binary operation on A?
(ii) Is * commutative? Give reason.

Ans. (a) $\quad \operatorname{gof}(x)=g(f(x))=g\left(x^{2}\right)=x^{2}+1$
(b)

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{2}\right) \\
\Rightarrow x_{1}^{3}=x_{2}^{3} \Rightarrow x_{1}^{3}-x_{2}^{3} & =0 \\
\Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right) & =0
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow x_{1}-x_{2}=0 \\
\Rightarrow x_{1}=x_{2}
\end{gathered}
$$

$\therefore f$ is injective, i.e., one-one
Surjective

$$
\begin{aligned}
\text { Let } y & =4 \in \mathrm{~N}, \\
\Rightarrow f(x)=4 \Rightarrow x^{3} & =4 \\
\Rightarrow x & =4^{1 / 3} \notin \mathrm{~N},
\end{aligned}
$$

$\therefore f$ is not surjective, i.e., onto
(c) (i) Yes.
(ii) No

$$
p * q=q \text { and } q * p=p
$$

Since $p * q \neq q * p$, * is not commutative
16. (a) What is the minimum number of ordered pairs to form a non-zero reflexive relation on a set of n elements?
(b) On the set R of real numbers, S is a relation defined as $\mathrm{S}=\{(x, \mathrm{y}) \mid x \in \mathrm{R}, \mathrm{y} \in \mathrm{R}$, $x+y=x y\}$. Find $\mathrm{a} \in \mathrm{R}$ such that ' a ' is never the first element of an ordered pair is S . Also find $b \in R$ such that ' b ' is never the second element of an ordered pair is S.
(c) Consider the function $f(x)=\frac{3 x+4}{x-2}, x \neq 2$. Find a function $g(x)$ on a suitable domain such that $(\mathrm{gof})(x)=x=(f \circ g)(x)$

Ans. (a) n
(b)

$$
\begin{aligned}
a+b=a b \Rightarrow a b-b & =a \\
\Rightarrow b(a-1) & =a \\
\Rightarrow b & =\frac{a}{a-1} \\
\Rightarrow b & \neq 1 \quad \text { Similarly; } a \neq 1
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =\frac{3 x+4}{x-2} \\
\Rightarrow 3 x+4 & =y(x-2) \\
\Rightarrow 3 x+4=y x-2 y \Rightarrow y x-3 x & =2 y+4 \\
\Rightarrow x & =\frac{2 y+4}{y-3} \quad \Rightarrow g(x)=\frac{2 x+4}{x-3}
\end{aligned}
$$

17. (a) Let R be the relation on the set N of the natural numbers given by $R=\{(a, b): a-b>2, b>3\}$. Choose the correct answer
(A) $(4,1) \in R$
(B) $(5,8) \in R$
(C) $(8,7) \in R$
(D) $(10,6) \in R$
(b) If $f(x)=8 x^{3}$ and $\mathrm{g}(x)=x^{1 / 3}$. Find $\mathrm{g}(f(x))$ and $f(\mathrm{~g}(x))$
(c) Let $*$ be a binary operation on the set Q of rational numbers defined by a $* \mathrm{~b}=$ $\frac{\mathrm{ab}}{3}$. Check whether $*$ is commutative and associative?
Ans. (i) (d) $(10,6) \in R$
(ii) Given; $f(x)=8 x^{3}$ and $g(x)=x^{1 / 3}$

$$
\begin{aligned}
& g(f(x))=g\left(8 x^{3}\right)=\left(8 x^{3}\right)^{1 / 3}=2 x \\
& f(g(x))=f\left(x^{1 / 3}\right)=8\left(x^{1 / 3}\right)^{3}=8 x
\end{aligned}
$$

(iii)

$$
a^{*} b=\frac{a b}{3}=\frac{b a}{3}=\mathrm{b}^{*} a . \quad \Rightarrow^{*} \text { is commutative. }
$$

$$
a^{*}\left(b^{*} c\right)=a^{*} \frac{b c}{3}=\frac{a b c}{9}
$$

$$
(a * b) * c=\frac{a b}{3} * c=\frac{a b c}{9}
$$

$$
\Rightarrow a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c . \quad \Rightarrow * \text { is associative. }
$$

18. Consider $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=5 x+2$.
(a) Show that f is one-to-one.
(b) Is f invertible? Justify your answer.
(c) Let $*$ be a binary operation on N defined by $\mathrm{a} * \mathrm{~b}=\mathrm{HCF}$ of a and b .
(i) Is * commutative?
(ii) Is * associative?
(2013)

Ans. (a)

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$$
\begin{aligned}
\Rightarrow \quad 5 x_{1}+2 & =5 x_{2}+2 \\
5 x_{1} & =5 x_{2} . \\
\Rightarrow x_{1} & =x_{2} \text {.i.e } f(x) \text { is one }- \text { one }
\end{aligned}
$$

(b)

$$
\text { Let } y=f(x) \text {. }
$$

$$
\Rightarrow x=\frac{y-2}{5} \in \mathrm{R}
$$

$$
f(x)=5\left(\frac{y-2}{5}\right)+2
$$

$$
=y-2+2=y .
$$

$\Rightarrow f$ is onto
$\Rightarrow f$ a bijective function and f is invertible
(c) (i) $a^{*} b=$ H.C.F of a and $b=$ H.C.F of b and $a=b * a$ \Rightarrow * is commutative
(ii) $a^{*}\left(b^{*} c\right)=a^{*}(\operatorname{HCF} b c)=\operatorname{HCF}(a, b, c)$
(a*b) ${ }^{*} c=(H C F ~ a b) * ~ c=\operatorname{HCF}(a, b, c)$
\Rightarrow * is commutative.
19. (a) Give an example of a relation on a set $A=\{1,2,3,4\}$, which is reflexive, symmetric but not transitive.
(b) Show that $f:[-1,1] \rightarrow \mathrm{R}$ is given by $f(x)=\frac{x}{x+2}$ is one-one.
(c) Let $*$ be a binary operation on Q^{+}defined by $a * b=\frac{a b}{6}$. Find inverse of 9 with respect to *.

Ans. (a) $A=\{1,2,3,4\}$

$$
R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)\}
$$

(b)

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow \quad & \frac{x_{1}}{x_{1}+2}=\frac{x_{2}}{x_{2}+2} \\
\Rightarrow \quad & x_{1}\left(x_{2}+2\right)=x_{2}\left(x_{1}+2\right) \\
\Rightarrow \quad & x_{1} x_{2}+2 x_{1}=x_{1} x_{2}+2 x_{2} . \\
\Rightarrow \quad & 2 x_{1}=2 x_{2} . \\
\Rightarrow & x_{1}=x_{2} \text { i.e, } f(x) \text { is one to one }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& a^{*} e=a, \text { where } e \text { is the identity element } \\
& \Rightarrow \frac{a e}{6}=a \Rightarrow e=6
\end{aligned}
$$

If b is the inverse of 9 , then 9 * $b=e$

$$
\begin{aligned}
\Rightarrow \frac{9 b}{6} & =6 \\
\Rightarrow b & =4
\end{aligned}
$$

ie, inverse of 9 w.r.t * is 4 .

Additional Questions and Answers

1. Let R be a relation on the set $\mathrm{A}=\{1,2,3,4,5,6\}$ defined as $\mathrm{R}=\{(x, y): y=2 x-1\}$
(i) Write Rin roster form and find it's domain and range
(ii) Is R an equivalence relation? Justify

Ans. (i)

$$
\begin{aligned}
R & =\{(1,1),(2,3),(3,5)\} \\
\text { Domain } & =\{1,2,3\} ; \text { Range }=\{1,3,5\}
\end{aligned}
$$

(ii) Since $(2,2) \notin R, R$ is not reflexive
$(2,3) \in R$ but $(3,2) \notin R ; R$ is not symmetric
$(2,3) \in R,(3,5) \in R$ but $(2,5) \notin R, R$ is not transitive
$\therefore \mathrm{R}$ is not an equivalence relation
2. The relation R defined on the $A=\{-1,0,1\}$ as $R=\left\{(a, b): a^{2}=b\right\}$
(i) Check whether R is reflexive, symmetric and transitive
(ii) Is R an equivalence relation?

Ans. (i) $(-1,-1) \notin R, R$ is not reflexive
$(-1,1) \in R$ and $(1,-1) \notin R, R$ is not symmetric
$(-1,1) \in R,(1,1) \in R$ and $(-1,1) \in R, R$ is transitive.
(ii) R is not reflexive, not symmetric and transitive.

So R is not an equivalence relation
3. Let $A=\{1,2,3\}$. Give an example of a relation on A which is
(i) Symmetric but neither reflexive nor transitive
(ii) Transitive but neither reflexive nor symmetric

Ans. (i) $R=\{(1,2),(2,1)\}$
$(1,1) \notin R \Rightarrow R$ is not reflexive
$(1,2) \in R \Rightarrow(2,1) \in R, R$ is symmetric
$(1,2) \in R,(2,1) \in R$ but $(1,1) \notin R, R$ is not transitive
(ii) $R=\{(1,2),(1,3),(2,3)\}$
$(1,1) \notin R \Rightarrow R$ is not reflexive
$(1,2) \in R$ but $(2,1) \notin R, R$ is not symmetric
$(1,2) \in R,(2,3) \in R \Rightarrow(1,3) \in R, R$ is transitive
4. (i) Let f be a function defined by $f(x)=\sqrt{x}$ is a function if it defined from $\left(f: \mathrm{N} \rightarrow \mathrm{N}, \quad f: \mathrm{R} \rightarrow \mathrm{R}, f: \mathrm{R} \rightarrow \mathrm{R}^{+}, f: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+}\right)$
(ii) Check the injectivity and surjectivity of the following functions
(a) $f: \mathrm{N} \rightarrow \mathrm{N}$ given by $f(x)=x^{3}$
(b) $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=[x]$

Ans. (i) $f: \mathrm{R}^{+} \rightarrow \mathrm{R}^{+} \quad$ For $\mathrm{x}, \mathrm{y} \in \mathrm{N}$
(ii) (a) $\quad f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y \Rightarrow \mathrm{f}$ is injective

For $2 \in \mathrm{~N}$, there does not exist x in the domain N such that $f(x)=x^{3}=2$.
$\therefore f$ is not surjective
(b) $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=[x]$

It seen that $f(1.1)=1$ and $f(1.8)=1$;
But $1.1 \neq 1.8 ; \therefore f$ is not injective
There does not exist any element $x \in \mathrm{R}$ such that $f(x)=0.7$
$\therefore f$ is not surjective
5. (a) Find fog and gof if
(i) $f(x)=|x|$ and $\mathrm{g}(x)=|3 x+4|$
(ii) $f(x)=16 x^{4}$ and $g(x)=x^{1 / 4}$
(b) If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, prove that $f \circ f(x)=x$

Ans. (a) (i) $f(x)=|x|$ and $g(x)=|3 x+4|$

$$
\begin{aligned}
\Rightarrow f \circ g(x) & =f(g(x))=f(|3 x+4|)=||3 x+4||=|3 x+4| \\
g \circ f(x) & =g(f(x))=g(|x|)=|3| x|+4|
\end{aligned}
$$

(ii) $f \circ g(x)=f(g(x))=f\left(x^{1 / 4}\right)=16\left(x^{1 / 4}\right)^{4}=16 x$ $g \circ f(x)=g(f(x))=g\left(16 x^{4}\right)=\left(16 x^{4}\right)^{1 / 4}=4 x$
(b) $f \circ f(x)=f(f(x))=\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4}=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}=\frac{34 x}{34}=x$
6. Let $S=\{(1,2),(2,3),(3,4)\}$
(i) Find the domain and range of S (ii) Find S^{-1}
(iii) Find the domain and range of S^{-1}
(iv) Verify that S^{-1} is a function using the graph of S and S^{-1}

Ans. (i) Domain $=\{1,2,3\}$; Range $=\{2,3,4\}$
(ii) $S^{-1}=\{(2,1),(3,2),(4,3)\}$
(iii) Domain $=\{2,3,4\}$; Range $=\{1,2,3\}$
(iv) Yes, S^{-1} is a function because x coordinates do not intersect
7. (i) Consider $f:\{3,4,5,6\} \rightarrow\{8,10,12,13,14\}$ and $x=\{(3,8),(4,10),(5,12),(6,14)\}$. State whether f has inverse? Give reason
(ii) Consider $f: \mathrm{R} \rightarrow \mathrm{R}$ given by $f(x)=3 x+2$. Show that f is invertible. Find the inverse of f

Ans. (i) Distinct elements in set $\{3,4,5,6\}$ has distinct images nuder $f . \therefore f$ is one-one But 13 in the codomain has no pre image. $\therefore f$ is not onto.
$\therefore f$ has no inverse
(ii)

$$
f(x)=3 x+2 ; \text { then }
$$

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 3 x_{1}+2=3 x_{2}+2 \Rightarrow x_{1}=x_{2}
$$

Hence F is one - one

$$
\begin{aligned}
& \text { For } y \in \mathrm{R}, \text { let } y=3 x+2 \Rightarrow x=\frac{\mathrm{y}-2}{3} \in \mathrm{R} \\
& f(x)=f\left(\frac{y-2}{3}\right)=3\left(\frac{y-2}{3}\right)+2=y \Rightarrow f \text { is onto }
\end{aligned}
$$

$g: \mathrm{R} \rightarrow \mathrm{R}$ such that $\mathrm{g}(y)=\frac{y-2}{3}$

$$
\begin{aligned}
& g \circ f(x)=g(f(x))=g(3 x+2)=\frac{3 x+2-2}{3}=x \\
& f \circ g(y)=f(g(y))=f\left(\frac{y-2}{3}\right)=3\left(\frac{y-2}{3}\right)+2=y
\end{aligned}
$$

8. Choose the correct answer from the bracket

If $x \neq 1$ and $f(x)=\frac{x+1}{x-1}$ is a real function, then $f \circ f(2)=$

$$
(1,2,3,4)
$$

$\begin{array}{ll}\text { (i) What is the inverse of } f & \text { (ii) Find } f(3)+f^{-1}(3)\end{array}$
Ans. (i) 2
(ii) Let g : range of $f \rightarrow \mathrm{R}-\{1\}$ be the inverse of f

Let y be any arbitrary element in the range of f, then $y=f(x)=\frac{x+1}{x-1}$

$$
\Rightarrow x y-y=x+1 \Rightarrow x(y-1)=y+1 \Rightarrow x=\frac{y+1}{y-1}, x \neq 1
$$

g : range of $f \rightarrow \mathrm{R}-\{1\}$ as $g(y)=\frac{y+1}{y-1}$

$$
g \circ f(x)=g(f(x))=g\left(\frac{x+1}{x-1}\right)=\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}=x
$$

$$
\therefore f^{-1}=g \Rightarrow f^{-1}(y)=\frac{y+1}{y-1}, y \neq 1
$$

(iii)

$$
f(3)=2, f^{-1}(3)=2
$$

$\Rightarrow f(3)+f^{-1}(3)=2+2=4$
9. (i) Determine whether the following is a binary operation or not? Justify $a^{*} b=2^{a} b$ defined on Z
(ii) Determine whether * is commutative or associative if

$$
a * b=\frac{a b}{6}, a, b \in R
$$

Ans. (i)

$$
a^{*} b=2^{a} b
$$

If a is negative, then 2^{a} becomes a fraction

$$
\text { Eg : }-1^{*} 3=2^{-1} .3=\frac{3}{2} \notin Z ; \therefore \text { * is not a binary operation }
$$

(ii) $a * b=\frac{a b}{6} \Rightarrow b * a=\frac{b a}{6}=\frac{a b}{6}=a$ * b
\Rightarrow * is commutative

$$
\begin{aligned}
(a * b) * c=\frac{\frac{a b}{6} \cdot c}{6} & =\frac{a b c}{36} \Rightarrow a *\left(b^{*} c\right)=\frac{a \cdot \frac{b c}{6}}{6}=\frac{a b c}{36} \\
\therefore a *(b * c) & =a *(b * c) \Rightarrow * \text { is associative }
\end{aligned}
$$

10. Consider the binary operation * $: Q \rightarrow Q$ where Q is the set of rational numbers is defined as a * $b=a+b-a b$
(i) Find 2 * 3
(ii) Is identity for * exist? If yes, find the identity element
(iii) Are elements of Q invertible? If yes, find the inverse of an element in Q.

Ans. (i)

$$
2 * 3=2+3-6=-1
$$

(ii)

$$
\begin{aligned}
a * e=a+e-a e & =a \Rightarrow e-a e=0 \\
\Rightarrow e(1-a) & =0 \Rightarrow e=0 \\
\Rightarrow e * a & =a \\
\Rightarrow e+a-e a & =a \\
\Rightarrow e-e a & =0 \\
\Rightarrow e & =0 \text { is the identity element }
\end{aligned}
$$

(iii) $\quad a^{*} a^{-1}=a+a^{-1}-a a^{-1}=0$
(iv) $\Rightarrow a^{-1}(1-a)=-a \Rightarrow a^{-1}=\frac{-a}{1-a}=\frac{a}{a-1}$
11. The binary operation $*: R \times R \rightarrow R$ is defined as $a * b=2 a+b$. Find $(2 * 3) * 4$.

Ans. 18
12. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

Ans. $(1,2) \in R,(2,1) \in R$ but $(1,1) \notin R$
13. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. State whether f is one-one or not.

Ans. f is a one-one function
14. If the binary operation * on the set of integers Z, is defined by a* $b=a+3 b^{2}$, then find the value of 2 * 4 .

Ans. 50
15. Let * be a binary operation defined by a * $b=2 a+b-3$. Find 3 * 4 .

Ans. $3^{*} 4=2 \times 3+4-3=7$
16. Prove that if E and F are independent events, then the events E and F ' are also independent.

Ans.

$$
\begin{aligned}
P\left(E \cap F^{\prime}\right) & =P(E)-P(E \cap F) \\
& =P(E)-P(E) \cdot P(F) \\
& =P(E)[1-P(F)]=P(E) P\left(F^{\prime}\right)
\end{aligned}
$$

17. A binary operation * is defined on the set $x=\mathrm{R}-\{-1\}$ by

$$
x^{*} \mathrm{y}=x+\mathrm{y}+x \mathrm{y}, \forall x, \mathrm{y} \in \mathrm{X}
$$

Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.

Ans. (i) commutative : let $x, \mathrm{y} \in \mathrm{R}-\{-1\}$ then
$x^{*} \mathrm{y}=x+\mathrm{y}+x \mathrm{y}=\mathrm{y}+x+\mathrm{y} x=\mathrm{y}$ * x
\therefore * is commutative
(ii) Associative : let $x, y, z \in \mathrm{R}-\{-1\}$ then
$x^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)=x^{*}(\mathrm{y}+\mathrm{z}+\mathrm{yz})=x+(\mathrm{y}+\mathrm{z}+\mathrm{yz})+x(\mathrm{y}+\mathrm{z}+\mathrm{yz})$

$$
=x+y+z+x y+y z+z x+x y z
$$

$\left(x^{*} y\right)^{*} z=(x+y+x y) * z=(x+y+x y)+z+(x+y+x y) \cdot z$
$=x+y+z+x y+y z+z x+x y z$

$$
x^{*}\left(y^{*} \mathrm{z}\right)=\left(x^{*} \mathrm{y}\right)^{*} \mathrm{z} \quad \therefore{ }^{*} \text { is Associative }
$$

(iii) Identity Element : let $e \in R-\{-1\}$ such that $a{ }^{*} e=e$ * $a=a \forall a \in R-\{-1\}$

$$
\therefore a+e+a e=a \quad \Rightarrow e=0
$$

(iv) Inverse : let $a * b=b * a=e=0 ; a, b \in R-\{-1\}$

$$
\Rightarrow a+b+a b=0
$$

$\therefore \mathrm{b}=\frac{-\mathrm{a}}{1+\mathrm{a}}$ or $\mathrm{a}^{-1}=\frac{-\mathrm{a}}{1+\mathrm{a}}$
18. If $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be two functions defined as $f(x)=|x|+x$ and $\mathrm{g}(x)=|x|-x, \forall x \in \mathrm{R}$.

Then find fog and gof. Hence find fog(-3), fog(5) and gof (-2).
Ans. $f(x)=|x|+x$ and $g(x)=|x|-x, \forall x \in \mathrm{R}$

$$
\begin{aligned}
(\mathrm{fog})(x) & =f(\mathrm{~g}(x))=||x|-1|+|x|-x \\
(\mathrm{gof})(x) & =\mathrm{g}(f(x))=||x|+x|-|x|-x \\
(\mathrm{fog})(-3) & =6,(\mathrm{fog})(5)=0,(\text { gof })(-2)=2
\end{aligned}
$$

19. Let $A=R \times R$ and $*$ be the binary operation on A defined by $(a, b) *(c, d)=(a+c, b+$ d). Prove that * is commutative and associative. Find the identity element for * on A. Also write the inverse element of the element $(3,-5)$ in A.

Ans. $\forall \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f} \in \mathfrak{R}$

$$
\begin{align*}
((a, b) *(c, d) *(e, f) & =(a+c, b+d) *(e, f) \\
& =(a+c+e, b+d+f) \tag{3}
\end{align*}
$$

$$
\begin{align*}
(a, b) *((c, d) *(e, f)) & =(a, b) *(c+e, d+f) \\
& =(a+c+e, b+d+f) \tag{4}
\end{align*}
$$

* is Associative

Let (x, y) be on identity element in $\mathfrak{R} \times \mathfrak{R}$

$$
\begin{aligned}
\Rightarrow(\mathrm{a}, \mathrm{~b}) *(x, \mathrm{y}) & =(\mathrm{a}, \mathrm{~b})=(x, \mathrm{y}) *(\mathrm{a}, \mathrm{~b}) \\
\Rightarrow \mathrm{a}+x & =\mathrm{a}, \mathrm{~b}+\mathrm{y}=\mathrm{b} \\
x & =0, \mathrm{y}=0
\end{aligned}
$$

$\therefore(0,0)$ is identity element
Let the inverse element of $(3,-5)$ be $\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& \Rightarrow(3,-5) *\left(x_{1}, \mathrm{y}_{1}\right)=(0,0)=\left(x_{1}, \mathrm{y}_{1}\right) *(3,-5) \\
& \qquad 3+x_{1}=0,-5+\mathrm{y}_{1}=0 \\
& \Rightarrow x_{1}=-3, \mathrm{y}_{1}=5 \\
& \Rightarrow(-3,5) \text { is an inverse of }(3,-5)
\end{aligned}
$$

20. If $f(x)=\sqrt{x^{2}+1} ; \mathrm{g}(x)=\frac{x-1}{x^{2}+1}$ and $\mathrm{h}(x)=2 x-3$, then find $f^{\prime}\left[\mathrm{h}\left\{\mathrm{g}^{\prime}(x)\right\}\right]$.

Ans.

$$
f(x)=\sqrt{x^{2}+1} \mathrm{~g}(x)=\frac{x-1}{x^{2}+1}, \mathrm{~h}(x)=2 x-3
$$

Differentiating w.r.t. " x ", we get

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x}{\sqrt{x^{2}+1}}, \mathrm{~g}^{\prime}(x)=\frac{1-2 x-x^{2}}{\left(x^{2}+1\right)^{2}}, \mathrm{~h}^{\prime}(x)=2 \\
f^{\prime}\left(\mathrm{h}^{\prime}\left(\mathrm{g}^{\prime}(x)\right)\right) & =\frac{2}{\sqrt{5}}
\end{aligned}
$$

21. $\operatorname{Let} A=I R-\{3\}$ and $B=I R-\{1\}$.

Consider the function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Show that fis one-one and onto
and hence find f^{-1}. and hence find f^{-1}.

Ans. Let $x_{1}, x_{2} \in \mathrm{~A}$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
\frac{x_{1}-2}{x_{1}-3} & =\frac{x_{2}-2}{x_{2}-3} \\
\therefore \quad x_{1} x_{2}-2 x_{2}-3 x_{1} & =x_{1} x_{2}-2 x_{1}-3 x_{2} \\
\Rightarrow x_{1} & =x_{2}
\end{aligned}
$$

Hence f is $1-1$

$$
\text { Let } \begin{aligned}
\mathrm{y} \in \mathrm{~B}, \therefore \mathrm{y} & =f(x) \\
\Rightarrow \mathrm{y} & =\frac{x-2}{x-3} \Rightarrow x \mathrm{y}-3 \mathrm{y}=x-2 \\
\text { or } x & =\frac{3 \mathrm{y}-2}{\mathrm{y}-1}
\end{aligned}
$$

since $y \neq 1$ and $\frac{3 y-2}{y-1} \neq 3, x \in A$
Hence f is ONTO

$$
\text { and } f^{-1}(\mathrm{y})=\frac{3 \mathrm{y}-2}{\mathrm{y}-1}
$$

22. Show that $f: \mathrm{N} \rightarrow \mathrm{N}$, given by
$f(x)\left\{\begin{array}{l}x+1, \text { if } x \text { is odd } \\ x-1, \text { if } x \text { is even } \text { is both one-one and onto. }\end{array}\right.$
Ans. Let x_{1} be odd and x_{2} be even and suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow x_{1}+1=x_{2}-1 \Rightarrow x_{2}-x_{1}=2$ which is not possible
simlarly, if x_{2} is odd and x_{1} is even, not possible to have $f\left(x_{1}\right)=f\left(x_{2}\right)$
Let x_{2} and x_{2} be both odd $\Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$
simlarly, if x_{1} and x_{1} are both even, then also $x_{1}=x_{2}$
$\therefore f$ is one - one
Also, any odd number $2 r+1$ in co-domain N is the image of $(2 r+2)$ in domain N and any even number $2 r$ in the co-domain N is the image of $(2 r-1)$ in domain N
$\Rightarrow f$ is on to
23. A binary operation $*$ on the set $\{0,1,2,3,4,5\}$ is defined as :
$a * b= \begin{cases}a+b, & \text { if } a+b<6 \\ a+b-6, & \text { if } a+b \geq 6\end{cases}$
Show that zero is the identity for this operation and each element ' a ' of the set is, invertible with $6-a$, being the inverse of ' a '.

Ans.
$\left.\begin{array}{l}\text { since } a * 0=a+0=a \\ \text { and } 0 * a=0+a=a\end{array}\right\} \forall a \in\{0,1,2,3,4,5\}$
$\therefore 0$ is the identity for *.
Also, $\forall a \in\{0,1,2,3,4,5\}, a *(6-a)=a+(6-a)-6=0$ (which is identity)
\therefore Each element ' a ' of the set is invertible with $(6-a)$, being the inverse of ' a '.
24. 26. Let $\mathrm{A}=\mathrm{R}-\{1\}$. If $f: \mathrm{A} \rightarrow \mathrm{A}$ is a mapping defined by $f(x)=\frac{x-2}{x-1}$, show that f is bijective, find f^{-1}.

Also find: (i) x if $f^{-1}(x)=\frac{5}{6} \quad$ (ii) $f^{-1}(2)$
Ans. $f: \mathrm{A} \rightarrow \mathrm{A}$
Let $x_{1}, x_{2} \in \mathrm{~A}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow \frac{x_{1}-2}{x_{1}-1}=\frac{x_{2}-2}{x_{2}-1}$
$\Rightarrow x_{1}=x_{2}$
$\Rightarrow f$ is one-one
Now $\mathrm{y}=\frac{x-2}{x-1} \Rightarrow x-2=x y-y$
$\Rightarrow x(\mathrm{y}-1)=\mathrm{y}-2$
$\Rightarrow x=\frac{\mathrm{y}-2}{\mathrm{y}-1}$
For each $\mathrm{y} \in \mathrm{A}=\mathrm{R}-\{1\}$, there exists $x \in \mathrm{~A}$
Thus f is onto. Hence f is bijective
and $f^{-1}(x)=\frac{x-2}{x-1}$
(i) $f^{-1}(x)=\frac{5}{6} \Rightarrow \frac{x-2}{x-1}=\frac{5}{6} \Rightarrow x=7$
(ii) $f^{-1}(2)=0$

$$
\diamond \ggg \gg
$$

