TEACHERS FORUM[®]

QUESTION BANK (SOLVED)

KERALA STATE

+2 MATHEMATICS

Boa	rd Question Paper with Solutions - 2023 March	005 - 011
1.	RELATIONS AND FUNCTIONS	012 - 029
2.	INVERSE TRIGONOMETRIC FUNCTIONS	030 - 042
3.	MATRICES	043 - 057
4.	DETERMINANTS	058 - 075
5.	CONTINUITY AND DIFFERENTIABILITY	076 - 095
6.	APPLICATION OF DERIVATIVES	096 - 117
7.	INTEGRALS	118 - 137
8.	APPLICATION OF INTEGRALS	138 - 152
9.	DIFFERENTIAL EQUATIONS	153 - 173
10.	VECTOR ALGEBRA	174 - 190
11.	THREE DIMENSIONAL GEOMETRY	191 - 208
12.	LINEAR PROGRAMMING	209 - 223
13.	PROBABILITY	224 - 242

RELATIONS AND FUNCTIONS

PREVIOUS YEARS' QUESTIONS AND ANSWERS

- 1. Which of the following relations on $A = \{1, 2, 3\}$ is an equivalence relation ?
 - (a) $\{(1, 1), (2, 2), (3, 3)\}$ (b) $\{(1, 1), (2, 2), (3, 3), (1, 2)\}$ (2022)
 - (c) {(1, 1), (3, 3), (1, 3), (3, 1)} (d) None of these

Ans. (a) { (1,1), (2,2), (3,3) }

22. R = {(x, y) : x, y \notin Z, (x – y) is an integer}. Show that R is an equivalence relation

Ans. For any $a \in Z$, a - a = 0 is an integer.

Therefore R is reflexive.

Difference between two integers is also an integer.

That is if x - y is an integer ,then y - x is an integer. So R is symmetric.

if x - y, and y - z are integers, then x - z is also an integer. So R is transitive.

Therefore R is an equivalence relation.

- 2. If * is a binary operation on R defined by a * b = $\frac{ab}{3}$
 - (a) Find the identity element of *.
 - (b) Find the inverse of 3.

Ans.(a) Let e be the identity element of a.

Then a * e = e * a = a

$$a * e = a \Rightarrow \frac{ae}{3} = a \Rightarrow e = 3$$

(b) Let a⁻¹ be the inverse of a.

a * a⁻¹ = e
$$\Rightarrow \frac{a.a^{-1}}{3} = 3 a^{-1} = \frac{9}{a}$$

inverse of 3 is, 3⁻¹ = $\frac{9}{3} = 3$

3. (a) Discuss the continuity of the function

$$f(x) = \begin{cases} 3x + 1, & \text{if } x \le 3\\ x^2 + 1, & \text{if } x > 3 \end{cases}$$

TEACHERS FORUM

(2022)

(2022)

(b) Verify Rolle's theorem for the function $f(x) = 2x^2 - 12x + 1$ in [2, 4]. (2022)

```
Ans. (a) LHL = \lim_{x \to 3} (3x + 1) = 10

RHL = \lim_{x \to 3} (x^2 + 1) = 10

f (3) = 10

LHL = RHL = f(x)

Therefore f(x) is continuous .

(b) f(x) is continuous on [2, 4]

f(x) is differentiable on (2, 4)
```

f(a) = f(2) = -15

f(b) = f(4) = -15

here f(a) = f(b)

f'(x) = 4 x - 12

f'(c) = $0 \Rightarrow 4 c - 12 = 0$

 \Rightarrow c = 3 \in (2, 4) Hence verified.

4. (i) Let R be a relation on a set $A = \{1, 2, 3\}$, defined by $R = \{(1, 1), (2, 2), (3, 3), (1, 3)\}$. Then the ordered pair to be added to R to make it a smallest equivalence relation is

(a) (2, 1) (b) (3, 1) (c) (1, 2) (d) (1, 3)

(ii) Determine whether the relation R in the set A = {1, 2, 3, 4, 5, 6} as R = {(x, y) : y is divisible by x } is reflexive, symmetric and transitive. (2021)

Ans. (i) (b) (3, 1)

(ii) R = { (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6), (3, 6) }

 $(a, a) \in R$ for all $a \in A$.

.: R is reflexive

 $(1, 2) \in R$ but $(2, 1) \notin R$.

.:. R is not symmetric

If $(a, b) \in R$ and $(b, c) \in R$.

then (a, c) $\in R$ for a $\in A$

.:. R is transitive.

... R is reflexive and transitive but not symmetric.

(i) Let f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down go f.
(ii) Consider f: R → R given by f(x) = 2x + 1. Show that f is invertible. Find the inverse of f.

Ans. (i)
$$gof(1) = g(f(1)) = g(2) = 3$$

 $gof(3) = g(f(3)) = g(5) = 1$
 $gof(4) = g(f(4)) = g(1) = 3$

(ii)

Let y = 2x + 1 2x = y - 1 $x = \frac{y - 1}{2}$

g is the inverse of f if,

fog = gof
Let g (x) =
$$\frac{x-1}{2}$$

fog (x) = f(g (x)) = f($\frac{x-1}{2}$) = $2(\frac{x-1}{2}) + 1 = x - 1 + 1 = x$
gof (x) = g f((x)) = g (2x + 1) = $\frac{2x + 1 - 1}{2} = \frac{2x}{2} = x$
gof(x) = fog(x) = x.
 \therefore f is invertible
 \therefore f¹(x) = $\frac{x-1}{2}$

6. (i) Let R be a relation in the set N of natural numbers given by

 $R = \{(a, b) : a = b - 2\}$. Choose the correct answer.

(a) $(2,3) \in R$ (b) $(3,8) \in R$ (c) $(6,8) \in R$ (d) $(8,7) \in R$

(ii) Let * be a binary operation defined on the set Z of integers a * b = a + b + 1. Then find the identity element. (2020)

Ans. (i) (c) (6, 8) ∈ R

```
(ii) a * e = a
a + e + 1 = a
e + 1 = 0 \Rightarrow e = -1
```

7. Let A = **R** - {3} and B : **R** - {1}. Consider the function f : A \rightarrow B defined by $f(x) = \frac{x-2}{x-3}$ (i) Is *f* one-one and onto? Justify your answer. (2020)

(2021)

(ii) Is it invertible? Why?

(iii) If invertible, find inverse of f(x)

Ans. (i)
$$f(x_1) = f(x_2) \Rightarrow \frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

 $(x_1 - 2) (x_2 - 3) = (x_2 - 2) (x_1 - 3)$
 $x_1x_2 - 3 x_1 - 2x_2 + 6 = x_1x_2 - 2 x_1 - 3x_2 + 6$
 $-3 x_1 - 2 x_2 = -2 x_1 - 3 x_2$
 $-3 x_1 + 2 x_1 = 2 x_2 - 3 x_2$
 $\Rightarrow -x_1 = -x_2$
 $\Rightarrow x_1 = x_2 \therefore f \text{ is one - one.}$
Now $y = \frac{x - 2}{x - 3}$
 $yx - 3y = x - 2$
 $(y - 1) x = 3y - 2$
 $x = \frac{3y - 2}{y - 1} \in A \therefore f \text{ is onto}$

(ii) Yes. Because it is bijective.

(iii)
$$f^{-1}(x) = \frac{3x-2}{x-1}$$

8. (a) If $f(x) = \sin x$, $g(x) = x^2$, $x \in \mathbb{R}$; then find (fog) (x) (2019)

(b) Let u and v be two functions defined on [R as u (x) : 2x - 3 and v(x) = $\frac{3 + x}{2}$ that u and v are inverse to each other.

Ans. (a)
$$f(x) = \sin x$$
, $g(x) = x^2$

(fog)
$$(x) = f(g(x)) = f(x^2) = \sin x^2$$

(b) (u.v)
$$x = u(v(x)) = u\left(\frac{3+x}{2}\right) = 2\left(\frac{3+x}{2}\right) - 3 = x$$

(c) (v.u) $x = v(u(x)) = v(2x - 3) = \left(\frac{3+2x-3}{2}\right) = x$

- 9. (a) The function P is defined as "To each person on the earth is assigned a date of birth". Is this function one-one ? Give reason. (2019)
 - (b) Consider the function, $f: \left[0, \frac{\pi}{2}\right] \longrightarrow R$ given by $f(x) = \sin x$ and $g: \left[0, \frac{\pi}{2}\right] \longrightarrow R$ given by $g(x) = \cos x$.

(i) Show that f and g are one-one functions.

(c) The number of one-one functions from a set containing 2 elements to a set containing 3 elements is _____.

(i) 2 (ii) 3 (iii) 6 (iv) 8

Ans. (a) Not One - One

Because different persons have same birthday.

(b) f (x) = sin x
(i) f (x₁) = f (x₂)
$$\Rightarrow$$
 sin x₁ = sin x₂
 \Rightarrow x₁ = x₂ \Rightarrow f is One - One
g (x) = cos x
g (x₁) = g (x₂) \Rightarrow cos x₁ = cos x₂
 \Rightarrow x₁ = x₂ \Rightarrow g is One - One
(ii) (f + g) (x) = sin x + cos x
(f + g) (x₁) = (f + g) (x₂)
 \Rightarrow sin x₁ + cos x₁ = sin x₂ + cos x₂
 \Rightarrow sin x₁ - sin x₂ = cos x₂ - cos x₁
 \Rightarrow x₁ = x₂ \Rightarrow g is One - One
 \Rightarrow cos $\frac{x_1 + x_2}{2}$ = sin $\frac{x_1 + x_2}{2}$.
 \Rightarrow x₁ = $\frac{\pi}{2} - x_2$
 \Rightarrow f + g is not one-one
(c) (iii) 6
10. If $f(x) = \frac{x}{x + 1}, x \neq 1$
(a) Find for (x) (b) Find the inverse of f. (2018)
Ans. (a) $f(x) = \frac{x}{x + 1}, x \neq 1$
for $(x) = f(\frac{x}{x + 1}) = \frac{\frac{x}{x + 1}}{\frac{x}{x + 1} - 1} = \frac{\frac{x}{x + 1}}{\frac{x}{x + 1} - 1} = \frac{x}{1} = x$
(b) Since for (x) = x
f¹ = $\frac{y}{y + 1}, y \neq 1$

11. Let A = N × N and '*' be a binary operation on A defined by (a,b)* (c,d) = (a+c,b+d)
 (a) Find (1,2) * (2,3)
 (2018)

e

	(b)	Prove that '*' is commutative. (c) Prove that '*'is associative.		
Ans.	(a)	(a, b) * (c, d) = (a + c, b + d)		
		(1, 2) (2, 3) = (1 + 2, 2 + 3) = (3, 5)		
	(b)	(a, b) * (c, d) = (a + c, b + d)		
		(c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)		
\Rightarrow * is commutative				
	(c)	(a, b) * [(c, d) * (e, f)] = (a, b) * [(c + d), (d + f)] = (a + c + e, b + d + f)		
		[(a,b)*(c,d)*(e,f) = (a+c,b+d)*(e,f)] = (a+c+e,b+d+f)		
	i.e	(a,b) * [(c,d) * (e,f)] = [(a,b) * (c,d)] * (e,f)		
		∴ * is associative		
12. (a) Let R be a relation defined on A = $\{1, 2, 3\}$ by R = $\{(1,3), (3,1), (2,3)\}$ F a. Reflexive b. Symmetric c. Transitive d. Reflexive but not tran				
				(b) Find fog and gof if $f(x) = x + 1 $ and $g(x) = 2x - 1$.
(c) Let * be a binary operation defined on N × N by $(a,b) * (a,d) = (a,b,d)$				
		(a,b) $(c,d) = (a+c,b+d).$		
Ane	(\mathbf{a})	Symmetric (2017)		
All3.	Ans. (a) Symmetric			
(b) $\log = f(g(x)) = f(2x - 1) = 2x - 1 + 1 = 2x = 2x$				
	gof = g(f(x)) = g(x + 1) = 2 x + 1 - 1			
	(c) Let (e, f) be the identity function.			
	then $(a, b) * (e, f) = (a + e, b + f)$			
		For identify function $a + e \Rightarrow e = 0$		
		For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$		
13	(2)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $\mathbf{R} = \frac{f(x, y)}{x, y \in Z}$, $x = y \in Z^{2}$, then the relation R is		
13.	(a)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is		
13.	(a)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric		
13.	(a)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric (iii) Symmetric but not transitive (iv) an Equivalence relation		
13.	(a) (b)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric (iii) Symmetric but not transitive (iv) an Equivalence relation Let * be a binary operation on the set Q of rational numbers by $a * b = 2a + b$.		
13.	(a) (b)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric (iii) Symmetric but not transitive (iv) an Equivalence relation Let * be a binary operation on the set Q of rational numbers by $a * b = 2a + b$. Find $2 * (3 * 4)$ and $(2 * 3) * 4$		
13.	(a) (b) (c)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric (iii) Symmetric but not transitive (iv) an Equivalence relation Let * be a binary operation on the set Q of rational numbers by $a * b = 2a + b$. Find $2 * (3 * 4)$ and $(2 * 3) * 4$ Let $f : R \to R, g : R \to R$ be two one-one functions. Check whether gof is one- one or not. (2017)		
13. Ans .	(a) (b) (c) (a)	For identify function $a + e \Rightarrow e = 0$ and $b + f = b \Rightarrow f = 0$ Identify element does not exist. If $R = \{(x, y): x, y \in Z, x - y \in Z\}$, then the relation R is (i) Reflexive but not transitive (ii) Reflexive but not symmetric (iii) Symmetric but not transitive (iv) an Equivalence relation Let * be a binary operation on the set Q of rational numbers by $a * b = 2a + b$. Find $2 * (3 * 4)$ and $(2 * 3) * 4$ Let $f : R \to R, g : R \to R$ be two one-one functions. Check whether gof is one- one or not. (2017) (iv) an Equivalence relation		

$$(2 * 3)* 4 = (2 \times 2 + 3)* 4 = 7* 4 = 2 \times 7 + 4 = 18$$

(c)
$$(gof)(x_1) = (gof)(x_2)$$

 $\Rightarrow g[f(x_1)] = g[f(x_2)]$
 $\Rightarrow f(x_1) = f(x_2)$
 $\Rightarrow x_1 = x_2 \Rightarrow gof is one-one.$
(a) The function given $f: N \rightarrow N$, by $f(x) = 2x$ is

- (i) one-one and onto (ii) one-one but not onto
- (iii) not one-one and not onto (iv) onto, but not one-one

(b) Find
$$go_f(x)$$
, if $f(x) = 8x^3$ and $g(x) = x^{1/3}$

- (c) Let * be an operation such that
 a * b = LCM of a and b defined on the set A = {1,2,3,4,5}. Is * binary operation?
 Justify your answer. (2016)
- **Ans.** (a) (ii) f is one-one but not onto.

14.

(b)
$$gof(x) = g(f(x)) = g(8x^3) = (8x^3)^{1/3} = 2x$$

So * is not a binary operation.

15. (a) If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ and g(x) = x + 1, then gof(x) is

(i)
$$(x + 1)^2$$
 (ii) $x^3 + 1$ (iii) $x^2 + 1$ (iv) $x + 1$ (2016)

(b) Consider the function $f : \mathbb{N} \to \mathbb{N}$, given by $f(x) = x^3$. Sow that the function f is injective but not surjective.

(c) The given table shown an operation * on A {p, q}

*	р	q
р	р	q
q	р	q

(i) Is * a binary operation on A? (ii) Is * commutative? Give reason.

Ans. (a) $gof(x) = g(f(x)) = g(x^2) = x^2 + 1$ (b) $f(x_1) = f(x_2)$

$$\Rightarrow x_1^3 = x_2^3 \Rightarrow x_1^3 - x_2^3 = 0$$
$$\Rightarrow (x_1 - x_2) (x_1^2 + x_1 x_2 + x_2^2) = 0$$

$$\Rightarrow x_1 - x_2 = 0$$
$$\Rightarrow x_1 = x_2$$

 \therefore *f* is injective, i.e., one-one

Surjective

Let
$$y = 4 \in \mathbb{N}$$
,
 $\Rightarrow f(x) = 4 \Rightarrow x^3 = 4$
 $\Rightarrow x = 4^{1/3} \notin \mathbb{N}$,

 \therefore f is not surjective, i.e., onto

(c) (i) Yes.

(ii) No

$$p * q = q$$
 and $q * p = p$

Since $p * q \neq q * p$, * is not commutative

16. (a) What is the minimum number of ordered pairs to form a non-zero reflexive relation on a set of n elements?

(b) On the set R of real numbers, S is a relation defined as $S = \{(x, y) | x \in R, y \in R, x + y = xy\}$. Find $a \in R$ such that 'a' is never the first element of an ordered pair is S. Also find $b \in R$ such that 'b' is never the second element of an ordered pair is S.

(c) Consider the function $f(x) = \frac{3x+4}{x-2}$, $x \neq 2$. Find a function g(x) on a suitable domain such that (gof)(x) = x = (fog)(x) (2015)

Ans. (a) n

(b)
$$a + b = ab \Rightarrow ab - b = a$$

 $\Rightarrow b (a - 1) = a$
 $\Rightarrow b = \frac{a}{a - 1}$
 $\Rightarrow b \neq 1$ Similarly; $a \neq 1$
(c) $y = \frac{3x + 4}{x - 2}$
 $\Rightarrow 3x + 4 = y(x - 2)$
 $\Rightarrow 3x + 4 = yx - 2y \Rightarrow yx - 3x = 2y + 4$
 $\Rightarrow x = \frac{2y + 4}{y - 3} \Rightarrow g(x) = \frac{2x + 4}{x - 3}$
(a) Let P be the relation on the set N of the natural numbers of

17. (a) Let R be the relation on the set N of the natural numbers given by

 $R = \{(a, b): a - b > 2, b > 3\}$. Choose the correct answer

(A)
$$(4,1) \in \mathbb{R}$$
 (B) $(5,8) \in \mathbb{R}$ (C) $(8,7) \in \mathbb{R}$ (D) $(10,6) \in \mathbb{R}$
(b) If $f(x) = 8x^3$ and g $(x) = x^{1/3}$. Find g $(f(x))$ and $f(g(x))$
(c) Let $*$ be a binary operation on the set Q of rational numbers defined by a $*$ b = $\frac{ab}{3}$. Check whether $*$ is commutative and associative? (2014)
(i) (d) $(10,6) \in \mathbb{R}$

Ans. (i) (d)
$$(10, 6) \in \mathbb{R}$$

(ii) Given ; $f(x) = 8x^3$ and $g(x) = x^{1/3}$
 $g(f(x)) = g(8x^3) = (8x^3)^{1/3} = 2x$
 $f(g(x)) = f(x^{1/3}) = 8(x^{1/3})^3 = 8x$
(iii) $a^*b = \frac{ab}{3} = \frac{ba}{3} = b^*a. \Rightarrow * \text{ is commutative.}$
 $a^*(b^*c) = a^*\frac{bc}{3} = \frac{abc}{9}$
 $(a^*b)^*c = \frac{ab}{3} * c = \frac{abc}{9}$
 $\Rightarrow a^*(b^*c) = (a^*b)^*c. \Rightarrow * \text{ is associative.}$

18. Consider $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 5x + 2.

- Show that f is one-to-one. (a)
- Is f invertible? Justify your answer. (b)
- Let * be a binary operation on N defined by a * b = HCF of a and b. (C)

(i) Is * commutative? (ii) Is * associative?

Ans. (a)

$$f(x_{1}) = f(x_{2})$$

$$\Rightarrow 5x_{1}+2 = 5x_{2}+2$$

$$5x_{1} = 5x_{2}$$

$$\Rightarrow x_{1} = x_{2} \text{ .i.e } f(x) \text{ is one - one}$$
(b)

$$Let y = f(x).$$

$$\Rightarrow x = \frac{y-2}{5} \in \mathbb{R}$$

$$f(x) = 5\left(\frac{y-2}{5}\right)+2$$

$$= y-2+2 = y.$$

$$\Rightarrow f \text{ is onto}$$

$$\Rightarrow f \text{ a bijective function and } f \text{ is invertible}$$
(c) (i) a* b = H.C.F of a and b = H.C.F of b and a = b * a

 \Rightarrow * is commutative

(2013)

b =

(ii)
$$a^{*}(b^{*}c) = a^{*} (HCF b c) = HCF(a,b,c)$$

 $(a^{*}b)^{*}c = (HCF a b)^{*}c = HCF (a,b,c)$
 \Rightarrow^{*} is commutative.

(b) Show that $f: [-1, 1] \to \mathbb{R}$ is given by $f(x) = \frac{x}{x+2}$ is one-one.

(c) Let * be a binary operation on Q⁺ defined by a * b = $\frac{ab}{6}$. Find inverse of 9 with respect to * . (2013)

Ans. (a)
$$A = \{1,2,3,4\}$$

 $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,3), (3,2), (3,4), (4,3)\}$
(b) $f(x_1) = f(x_2)$
 $\Rightarrow \frac{x_1}{x_1+2} = \frac{x_2}{x_2+2}$
 $\Rightarrow x_1(x_2+2) = x_2(x_1+2)$
 $\Rightarrow x_1x_2+2x_1 = x_1x_2+2x_2$.
 $\Rightarrow 2x_1 = 2x_2$.
 $\Rightarrow x_1 = x_2$ i.e, $f(x)$ is one to one
(c) $a^*e = a$, where e is the identity element
 $\Rightarrow \frac{ae}{6} = a \Rightarrow e = 6$
If b is the inverse of 9, then 9 * b = e

$$\Rightarrow \frac{35}{6} = 6$$
$$\Rightarrow b = 4$$

ie, inverse of 9 w.r.t * is 4.

Additional Questions and Answers

1. Let R be a relation on the set A = {1,2,3,4,5,6} defined as R = {(x, y) : y = 2x - 1}

- (i) Write Rin roster form and find it's domain and range
- (ii) Is R an equivalence relation? Justify

Ans. (i)
$$R = \{(1, 1), (2, 3), (3, 5)\}$$

Domain = {1, 2, 3}; Range = {1, 3, 5}

∴ R is not an equivalence relation

- 2. The relation R defined on the A = $\{-1,0,1\}$ as R = $\{(a,b): a^2 = b\}$
 - (i) Check whether R is reflexive, symmetric and transitive
 - (ii) Is R an equivalence relation?
- **Ans.** (i) $(-1, -1) \notin R$, R is not reflexive
 - $(-1, 1) \in R$ and $(1, -1) \notin R$, R is not symmetric
 - $(-1, 1) \in R, (1, 1) \in R$ and $(-1, 1) \in R, R$ is transitive.
 - (ii) R is not reflexive, not symmetric and transitive.
 - So R is not an equivalence relation
- 3. Let A = {1, 2, 3}. Give an example of a relation on A which is(i) Symmetric but neither reflexive nor transitive
 - (ii) Transitive but neither reflexive nor symmetric

Ans. (i) R = $\{(1, 2), (2, 1)\}$

- $(1, 1) \notin R \Rightarrow R$ is not reflexive
- $(1, 2) \in R \Rightarrow (2, 1) \in R$, R is symmetric
- $(1, 2) \in R$, $(2, 1) \in R$ but $(1, 1) \notin R$, R is not transitive
 - (ii) $R = \{(1, 2), (1, 3), (2, 3)\}$
 - $(1, 1) \notin R \Rightarrow R$ is not reflexive
 - $(1, 2) \in R$ but $(2, 1) \notin R$, R is not symmetric
 - $(1, 2) \in R, (2, 3) \in R \Rightarrow (1, 3) \in R, R$ is transitive
- 4. (i) Let f be a function defined by $f(x) = \sqrt{x}$ is a function if it defined from $(f: \mathbb{N} \to \mathbb{N}, f: \mathbb{R} \to \mathbb{R}, f: \mathbb{R} \to \mathbb{R}^+, f: \mathbb{R}^+ \to \mathbb{R}^+)$
 - (ii) Check the injectivity and surjectivity of the following functions

(a)
$$f: \mathbb{N} \to \mathbb{N}$$
 given by $f(x) = x^3$ (b) $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = [x]$

Ans. (i) $f: \mathbb{R}^+ \to \mathbb{R}^+$ For $x, y \in \mathbb{N}$

 \therefore *f* is not surjective

5. (a) Find fog and gof if

(i) f(x) = |x| and g(x) = |3x + 4| (ii) $f(x) = 16x^4$ and $g(x) = x^{1/4}$

(b) If
$$f(x) = \frac{4x+3}{6x-4}$$
, $x \neq \frac{2}{3}$, prove that for $(x) = x$

Ans. (a) (i) f(x) = |x| and g(x) = |3x + 4| $\Rightarrow f \circ g(x) = f(g(x)) = f(|3x + 4|) = ||3x + 4|| = |3x + 4|$ $g \circ f(x) = g(f(x)) = g(|x|) = |3|x| + 4|$ (ii) $f \circ g(x) = f(g(x)) = f(x^{1/4}) = 16(x^{1/4})^4 = 16x$ $g \circ f(x) = g(f(x)) = g(16x^4) = (16x^4)^{1/4} = 4x$ (b) $f \circ f(x) = f(f(x)) = \frac{4(\frac{4x + 3}{6x - 4}) + 3}{6x - 4} = 16x + 12 + 18x - 12 = 34x$

(b)
$$fof(x) = f(f(x)) = \frac{4(6x-4)+6}{6(\frac{4x+3}{6x-4})-4} = \frac{46x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$$

6. Let S = {(1, 2), (2, 3), (3, 4)}

- (i) Find the domain and range of S (ii) Find S^{-1}
- (iii) Find the domain and range of $S^{\mbox{--}1}$
- (iv) Verify that S^{-1} is a function using the graph of S and S^{-1}

(ii) $S^{-1} = \{(2, 1), (3, 2), (4, 3)\}$

(iii) Domain = {2, 3, 4}; Range = {1, 2, 3}

(iv) Yes, S^{-1} is a function because *x* coordinates do not intersect

7. (i) Consider
$$f: \{3, 4, 5, 6\} \rightarrow \{8, 10, 12, 13, 14\}$$
 and

 $x = \{(3, 8), (4, 10), (5, 12), (6, 14)\}$. State whether f has inverse? Give reason

- (ii) Consider $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 3x + 2. Show that f is invertible. Find the inverse of f
- **Ans.** (i) Distinct elements in set {3, 4, 5, 6} has distinct images nuder f. $\therefore f$ is one-one But 13 in the codomain has no pre image. $\therefore f$ is not onto.

 $\therefore f$ has no inverse

(ii)
$$f(x) = 3x + 2$$
; then

$$f(x_1) = f(x_2) \Longrightarrow 3x_1 + 2 = 3x_2 + 2 \Longrightarrow x_1 = x_2$$

Hence F is one - one

For
$$y \in \mathbb{R}$$
, let $y = 3x + 2 \Rightarrow x = \frac{y-2}{3} \in \mathbb{R}$
 $f(x) = f\left(\frac{y-2}{3}\right) = 3\left(\frac{y-2}{3}\right) + 2 = y \Rightarrow f \text{ is onto}$
 $g: \mathbb{R} \to \mathbb{R}$ such that $g(y) = \frac{y-2}{3}$

$$gof(x) = g(f(x)) = g(3x + 2) = \frac{3x + 2 - 2}{3} = x$$
$$fog(y) = f(g(y)) = f(\frac{y - 2}{3}) = 3(\frac{y - 2}{3}) + 2 = y$$

8. Choose the correct answer from the bracket

If $x \neq 1$ and $f(x) = \frac{x+1}{x-1}$ is a real function, then for (2) = ------(1, 2, 3, 4)

(i) What is the inverse of f (ii) Find $f(3) + f^{-1}(3)$

Ans. (i) 2

(ii) Let g: range of $f \rightarrow R - \{1\}$ be the inverse of f

Let *y* be any arbitrary element in the range of *f*, then $y = f(x) = \frac{x+1}{x-1}$ *y* + 1

$$\Rightarrow xy - y = x + 1 \Rightarrow x (y - 1) = y + 1 \Rightarrow x = \frac{y}{y - 1}, x \neq 1$$

g: range of $f \to \mathbb{R} - \{1\}$ as $g(y) = \frac{y + 1}{y - 1}$
 $gof(x) = g(f(x)) = g\left(\frac{x + 1}{x - 1}\right) = \frac{\frac{x + 1}{x - 1} + 1}{\frac{x + 1}{x - 1} - 1} = x$

$$\therefore f^{-1} = g \Longrightarrow f^{-1}(y) = \frac{y+1}{y-1}, y \neq 1$$

(iii)

$$f(3) = 2, f^{-1}(3) = 2$$

 $\Rightarrow f(3) + f^{-1}(3) = 2 + 2 = 4$

9. (i) Determine whether the following is a binary operation or not? Justify

 $a * b = 2^{a} b$ defined on Z

(ii) Determine whether * is commutative or associative if

$$a * b = \frac{ab}{6}$$
, $a, b \in \mathbb{R}$
 $a * b = 2^a b$

Ans. (i)

If a is negative, then 2ª becomes a fraction

Eg:
$$-1^*3 = 2^{-1} \cdot 3 = \frac{3}{2} \notin Z$$
; \therefore * is not a binary operation
(ii) $a * b = \frac{ab}{6} \Rightarrow b * a = \frac{ba}{6} = \frac{ab}{6} = a * b$
 \Rightarrow * is commutative
 $\frac{ab}{6} \cdot c \qquad abc \qquad a \cdot \frac{bc}{6} \qquad abc$

$$(a * b) * c = \frac{\frac{db}{6} \cdot c}{6} = \frac{abc}{36} \Rightarrow a * (b * c) = \frac{a \cdot \frac{bc}{6}}{6} = \frac{abc}{36}$$
$$\therefore a * (b * c) = a * (b * c) \Rightarrow * \text{ is associative}$$

10. Consider the binary operation * :Q \rightarrow Q where Q is the set of rational numbers is defined as a * b = a + b - ab

(i) Find 2 * 3

(ii) Is identity for * exist? If yes, find the identity element

(iii) Are elements of Q invertible? If yes, find the inverse of an element in Q.

(i) (ii) 2 * 3 = 2 + 3 - 6 = -1

 $a * e = a + e - ae = a \Rightarrow e - ae = 0$ $\Rightarrow e (1 - a) = 0 \Rightarrow e = 0$

 \Rightarrow e = 0 is the identity element

- (iii) $a^* a^{-1} = a + a^{-1} aa^{-1} = 0$ (iv) $\Rightarrow a^{-1} (1 - a) = -a \Rightarrow a^{-1} = \frac{-a}{1 - a} = \frac{a}{a - 1}$
- 11. The binary operation *: R x R \rightarrow R is defined as a * b = 2a + b. Find (2 * 3) * 4.

Ans. 18

12. State the reason for the relation R in the set {1, 2, 3} given by R= {(I, 2), (2, 1)} not to be transitive.

Ans. $(1, 2) \in R$, $(2, 1) \in R$ but $(1, 1) \notin R$

13. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether *f* is one-one or not.

Ans. f is a one-one function

14. If the binary operation * on the set of integers Z, is defined by a * b = a + $3b^2$, then find the value of 2 * 4.

Ans. 50

15. Let * be a binary operation defined by a * b = 2a + b - 3. Find 3 * 4.

Ans. $3^* 4 = 2 \times 3 + 4 - 3 = 7$

16. Prove that if E and F are independent events, then the events E and F' are also independent.

Ans. $P(E \cap F^{i}) = P(E) - P(E \cap F)$ = $P(E) - P(E) \cdot P(F)$ = $P(E)[1 - P(F)] = P(E)P(F^{i})$

17. A binary operation * is defined on the set $x = R - \{-1\}$ by

 $x * y = x + y + xy, \forall x, y \in X.$

Check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X.

Ans. (i) commutative : let
$$x, y \in \mathbb{R} - \{-1\}$$
 then

x * y = x + y + xy = y + x + yx = y * x

∴ * is commutative

(ii) Associative : let $x, y, z \in \mathbb{R} - \{-1\}$ then

$$x * (y * z) = x * (y + z + yz) = x + (y + z + yz) + x (y + z + yz)$$

= x + y + z + xy + yz + zx + xyz

(x * y) * z = (x + y + xy) * z = (x + y + xy) + z + (x + y + xy) . z

= x + y + z + xy + yz + zx + xyz

x * (y * z) = (x * y) * z \therefore * is Associative

(iii) Identity Element : let $e \in R - \{-1\}$ such that $a * e = e * a = a \forall a \in R - \{-1\}$

 \therefore a + e + ae = a \Rightarrow e = 0

(iv) Inverse : let a * b = b * a = e = 0 ; a, b $\in R - \{-1\}$

 $\Rightarrow a + b + ab = 0$ $\therefore b = \frac{-a}{1 + a} \text{ or } a^{-1} = \frac{-a}{1 + a}$

18. If f, g : R \rightarrow R be two functions defined as f(x) = |x| + x and g(x) = |x| - x, $\forall x \in \mathbb{R}$. Then find fog and gof. Hence find fog(-3), fog(5) and gof (-2).

Ans. f(x) = |x| + x and g(x) = |x| - x, $\forall x \in \mathbb{R}$ (fog) (x) = f(g(x)) = ||x| - 1| + |x| - x(gof) (x) = g(f(x)) = ||x| + x| - |x| - x(fog) (-3) = 6, (fog) (5) = 0, (gof) (-2) = 2

19. Let A = R x R and * be the binary operation on A defined by (a, b) * (c, d) = (a + c, b + d). Prove that * is commutative and associative. Find the identity element for * on A. Also write the inverse element of the element (3, - 5) in A.

Ans. \forall a, b, c, d, e, f $\in \Re$

$$((a, b) * (c, d) * (e, f) = (a + c, b + d) * (e, f)$$
$$= (a + c + e, b + d + f) \longrightarrow (3)$$

$$(a, b) * ((c, d) * (e, f)) = (a, b) * (c + e, d + f)$$

= $(a + c + e, b + d + f) \rightarrow (4)$

* is Associative

Let (*x*, *y*) be on identity element in $\Re \times \Re$

$$\Rightarrow (a, b) * (x, y) = (a, b) = (x, y) * (a, b)$$
$$\Rightarrow a + x = a, b + y = b$$
$$x = 0, y = 0$$

 \therefore (0, 0) is identity element

Let the inverse element of (3, -5) be (x_1, y_1)

$$\Rightarrow (3, -5) * (x_1, y_1) = (0, 0) = (x_1, y_1) * (3, -5)$$
$$3 + x_1 = 0, -5 + y_1 = 0$$
$$\Rightarrow x_1 = -3, y_1 = 5$$

 \Rightarrow (- 3, 5) is an inverse of (3, - 5)

If $f(x) = \sqrt{x^2 + 1}$; $g(x) = \frac{x - 1}{x^2 + 1}$ and h(x) = 2x - 3, then find $f'[h'\{g'(x)\}]$. 20.

Ans.

 $f(x) = \sqrt{x^2 + 1} g(x) = \frac{x - 1}{x^2 + 1}, h(x) = 2x - 3$

Differentiating w.r.t. "x", we get

$$f'(x) = \frac{x}{\sqrt{x^2 + 1}}, g'(x) = \frac{1 - 2x - x^2}{(x^2 + 1)^2}, h'(x) = 2$$
$$f'(h'(g'(x))) = \frac{2}{\sqrt{5}}$$

21. Let $A = IR - \{3\}$ and $B = IR - \{1\}$.

Consider the function f :A \rightarrow B defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Show that fis one-one and onto and hence find f^{-1} .

Ans. Let
$$x_1, x_2 \in A$$
 and $f(x_1) = f(x_2)$

$$\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

$$\therefore \quad x_1 x_2 - 2x_2 - 3x_1 = x_1 x_2 - 2x_1 - 3x_2$$

$$\Rightarrow x_1 = x_2$$

Hence f is 1–1

Let
$$y \in B$$
, $\therefore y = f(x)$
 $\Rightarrow y = \frac{x-2}{x-3} \Rightarrow xy - 3y = x - 2$
or $x = \frac{3y-2}{y-1}$

since $y \neq 1$ and $\frac{3y-2}{y-1} \neq 3, x \in A$ Hence f is ONTO and $f^{-1}(y) = \frac{3y-2}{y-1}$

22. Show that $f: \mathbb{N} \to \mathbb{N}$, given by

f(x) $\begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases}$ is both one-one and onto.

Ans. Let x_1 be odd and x_2 be even and suppose $f(x_1) = f(x_2)$

 \Rightarrow x₁ + 1 = x₂ - 1 \Rightarrow x₂ - x₁ = 2 which is not possible

similarly, if x_2 is odd and x_1 is even, not possible to have $f(x_1) = f(x_2)$

Let x_2 and x_2 be both odd $\Rightarrow f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

similarly, if x_1 and x_1 are both even, then also $x_1 = x_2$

 $\therefore f$ is one – one

Also, any odd number 2r + 1 in co-domain N is the image of (2r + 2) in domain N and any even number 2r in the co-domain N is the image of (2r - 1) in domain N

 $\Rightarrow f$ is on to

23. A binary operation * on the set {0, 1, 2, 3, 4, 5} is defined as :

 $a * b = \begin{cases} a + b, & \text{if } a + b < 6 \\ a + b - 6, & \text{if } a + b \ge 6 \end{cases}$

Show that zero is the identity for this operation and each element 'a' of the set is, invertible with 6 - a, being the inverse of 'a'.

Ans. since
$$a * 0 = a + 0 = a$$

and $0 * a = 0 + a = a$ $\forall a \in \{0, 1, 2, 3, 4, 5\}$

 \therefore 0 is the identity for *.

Also, $\forall a \in \{0, 1, 2, 3, 4, 5\}$, a * (6 - a) = a + (6 - a) - 6 = 0 (which is identity)

: Each element 'a' of the set is invertible with (6 - a), being the inverse of 'a'.

24. 26. Let $A = R - \{1\}$. If $f : A \to A$ is a mapping defined by $f(x) = \frac{x-2}{x-1}$, show that f is bijective, find f^{-1} .

Also find : (i) x if $f^{-1}(x) = \frac{5}{6}$ (ii) $f^{-1}(2)$

Ans. $f : A \rightarrow A$

Let $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 2}{x_1 - 1} = \frac{x_2 - 2}{x_2 - 1}$$

$$\Rightarrow x_1 = x_2$$

$$\Rightarrow f \text{ is one-one}$$

Now $y = \frac{x - 2}{x - 1} \Rightarrow x - 2 = xy - y$

$$\Rightarrow x(y - 1) = y - 2$$

$$\Rightarrow x = \frac{y - 2}{y - 1}$$

For each $y \in A = R - \{1\}$, there exists $x \in A$

Thus f is onto. Hence f is bijective

and
$$f^{-1}(x) = \frac{x-2}{x-1}$$

(i) $f^{-1}(x) = \frac{5}{6} \Rightarrow \frac{x-2}{x-1} = \frac{5}{6} \Rightarrow x = 7$
(ii) $f^{-1}(2) = 0$ $\diamond \diamond \diamond \diamond \diamond$