QUESTION BANK

(solved)
Based on CBSE Previous years' question papers

Class XII

CHEMISTRY

CONTENTS

1. SOLUTIONS 005-031
2. ELECTROCHEMISTRY 032-059
3. CHEMICAL KINETICS 060-088
4. THE D - AND F- BLOCK ELEMENTS 089-116
5. COORDINATION COMPOUNDS 117-137
6. HALOALKANES AND HALOARENES 138-158
7. ALCOHOLS, PHENOLS AND ETHERS 159-191
8. ALDEHYDES, KETONES AND CARBOXYLIC ACIDS 192-235
9. AMINES 236-262
10. BIOMOLECULES 263-270

SOLUTIONS

1 MARKS

1. For two statements given - one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (i), (ii), (iii) and (iv) as given below :
(i) Both Assertion (A) and Reason (R) are correct, statements, and Reason (R) is the correct explanation of the Assertion (A).
(ii) Both Assertion (A) and Reason (R) are correct statements, but Reason (R) is not the correct explanation of the Assertion (A).
(iii) Assertion (A) is correct, but Reason (R) is incorrect statement.
(iv) Assertion (A) is incorrect, but Reason (R) is correct statement.

Assertion (A): Osmotic pressure is a colligative property.
(2020)

Reason (R): Osmotic pressure is directly proportional to molarity.
Ans. (ii)
2. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ on reacting gives a brown gas which undergoes dimerization on cooling? Identify the gas.
(2016)

Ans. NO_{2}

2 MARKS

3. Why does a solution containing non-volatile solute have a higher boiling point than pure solvent? Why is elevation of boiling point a colligative property?
(2019)

Ans. Because on addition of non-voilatile solute, vapour pressure of solution lowers down and therefore in order to boil solution, temperature has to be raised.
Because it depends on molality.
4. (a) Out of $0 \cdot 1$ molal aqueous solution of glucose and 0.1 molal aqueous solution of KCl , which one will have higher boiling point and why ?
(2019)
(b) Predict whether van't Hoff factor, (i) is less than one or greater than one in the following :
(i) $\mathrm{CH}_{3} \mathrm{COOH}$ dissolved in water
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$ dissolved in benzene

Ans. (a) 0.1 molal KCl ; Because KCl undergoes dissociation whereas glucose does not.
(b) (i) Van't Hoff factor i > 1
(ii) Van't Hoff factor $\mathrm{i}<1$
5. Give reasons :
(a) Cooking is faster in pressure cooker than in cooking pan.
(b) Red Blood Cells (RBC) shrink when placed in saline water but swell in distilled water.

Ans. (a) Due to increase of pressure in cooker, boiling point of water increases.
(b) RBC looses water in saline water and absorb water in distilled water due to osmosis.
6. State Raoult's law for a solution containing volatile components. Write two characteristics of the solution which obeys Raoult's law at all concentrations. (2019)

Ans. For a solution of volatile liquids, the partial vapour pressure of each component of the solution is directly proportional to its mole fraction present in solution.
(i) $\Delta_{\text {max }} \mathrm{H}=0$
(ii) $\Delta_{\text {max }} V=0$
(iii) The components have nearly same intermolecular force of attraction
7. Calculate the freezing point of a solution containing 60 g of glucose in 250 g of water. $\left(\right.$ Molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)\left(\mathrm{K}_{\mathrm{f}}\right.$ of water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

Ans.

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \mathrm{~m} \\
& =\frac{\mathrm{w}_{2} \times 1000}{\mathrm{M}_{2} \times \mathrm{w}_{1}} \\
& =\frac{1.86 \times 60 \times 1000}{180 \times 250}=2.48 \mathrm{~K} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}} \\
2.48 & =273.15-\mathrm{T}_{\mathrm{f}} \\
\Rightarrow \quad \mathrm{~T}_{\mathrm{f}} & =270.67 \mathrm{~K}
\end{aligned}
$$

8. Why a mixture of Carbon disulphide and acetone shows positive deviation from Raoult's law? What type of azeotrope is formed by this mixture?
(2018)

Ans. Intermolecular forces of attraction between carbon disulphide and acetone are weaker than the pure components.

Minimum boiling azeotrope at a specific composition.
9. Derive the relationship between relative lowering of vapour pressure and mole fraction of the volatile liquid.
(2017)

Ans. Let us assume a binary solution in which the mole fraction of the solvent be x_{1} and that of the solute be x_{2}, p_{1} be the vapour pressure of the solvent and $p_{1}{ }^{\circ}$ be the vapour pressure of the solvent in pure state.

According to Raoult's Law:
$p_{1}=x_{1} p_{1}{ }^{0}$
The decrease in vapour pressure of the solvent $\left(\Delta p_{1}\right)$ is given by:
$\Rightarrow \Delta \mathrm{p}_{1}=\mathrm{p}_{1}{ }^{0}-\mathrm{p}_{1}$

$$
\Rightarrow \Delta \mathrm{p}_{1}=\mathrm{p}_{1}^{0}-\mathrm{p}_{1}^{0} \mathrm{x}_{1} \quad[\text { using equation (1)] }
$$

$\Rightarrow \Delta p_{1}=p_{1}{ }^{0}\left(1-x_{1}\right)$
Since we have assumed the solution to be binary solution, $x_{2}=1-x_{1}$
$\Rightarrow \Delta \mathrm{p}_{1}=\mathrm{p}_{1}{ }^{0} \mathrm{x}_{2}$
$\Rightarrow \mathrm{x}_{2}=\Delta \mathrm{p}_{1} / \mathrm{p}_{1}{ }^{0}$
10. Define the following terms:
(i) Colligative properties
(ii) Molality (m)
(2017)

Ans. (i) Properties that are independent of nature of solute and depend on number of moles of solute only.
(ii) Number of moles of solute dissolved per kg of the solvent.
11. What are colligative properties ? Write the colligative property which is used to find the molecular mass of macromolecules.
(2017)

Ans. Properties that depend on the number of solute particles irrespective of their nature relative to the total number of particles present in the solution.

Osmotic Pressure.
13. Will the elevation in boiling point be same if 0.1 mol of Sodium chloride or 0.1 mol of sugar is dissolved in 1L of water? Explain.
(2016)

Ans. No, the elevation in boiling point is not the same.
Elevation in boiling point is a colligative property which depends on the number of particles. NaCl is an ionic compound which dissociates in solution to give more number of particles whereas sugar is made up of molecules and thus does not dissociate.
14. State Henry's law. Write its one application. What is the effect of temperature on solubility of gases in liquid?

Ans. Henry's law states that the mole fraction of gas in the solution is proportional to the partial pressure of the gas over the solution.
Applications: Solubility of CO_{2} gas in soft drinks
Solubility of gas in liquid decreases with increase in temperature.
15. (i) Gas (A) is more soluble in water than Gas (B) at the same temperature. Which one of the two gases will have the higher value of K_{H} (Henry's constant) and why?
(ii) In non - ideal solution, what type of deviation shows the formation of maximum boiling zeotropes?
(2016)

Ans. (i) Gas B. Higher the value of K_{H} lower is the solubility of gas.
(ii) Negative deviation from Raoult's law
16. Write two differences between a solution showing positive deviation and a solution showing negative deviation from Raoult's law.
(2016)

Ans.

CBSE
Chemistry Question Bank
Class XII

Positive deviation	Negative deviation Observed vapour pressure is greater than expected vapour pressure. Observed vapour pressure is less than expected vapour pressure.
A-B interaction < A-A \& B-B	A-B interaction >A-A \& B-B

17. (i) Write the colligative property which is used to find the molecular mass of macromolecules.
(ii) In non-ideal solution, what type of deviation shows the formation of minimum boiling azeotropes ?
(2016)

Ans. (i) Osmotic pressure (ii) Positive deviation from Raouls' law
18. Derive the relationship between relative lowering of vapour pressure and molar mass of the solute.
(2015)

Ans. As per Raoult's law $\mathrm{pA}=\mathrm{X}_{\mathrm{A}} \mathrm{p}_{\mathrm{A}}{ }^{\circ}$

$$
\begin{aligned}
P_{A} & =p_{A}^{\circ}\left(1-x_{B}\right)=p_{A}^{\circ}-p_{A}^{\circ} x_{B} \\
p_{A}^{\circ}-p_{A} & =p_{A}^{\circ} x_{B} \\
\left(p_{A}^{\circ}-p_{A}\right) / p_{A}^{\circ} & =x_{B} \\
\Delta p / p_{A}^{\circ} & =X_{B}=w_{B} M_{A} / M_{B} w_{A} \\
\therefore \quad M_{B} & =\frac{w_{B} M_{A}}{\left(\Delta p / p A^{\circ}\right) w_{A}}
\end{aligned}
$$

19. What is meant by positive deviations from Raoult's law ? Give an example. What is the sign of $\Delta_{\text {mix }} \mathrm{H}$ for positive deviation?
(2015)

Ans. When vapour pressure of solution is higher than that predicted by Raoult's law, it is called positive deviation.
Eg. ethanol-acetone
$\Delta_{\text {mix }} \mathrm{H}$ is positive
20. Define azeotropes. What type of azeotrope is formed by positive deviation from Raoult's law? Give an example.
(2015)

Ans. (a) Azeotropes are binary mixtures having the same composition in the liquid and vapour phase and boil at a constant temperature.
(b) Minimum boiling azeotrope eg - ethanol + water
21. (i) Why are aquatic species more comfortable in cold water than in warm water ?
(ii) What happens when we place the blood cell in saline water solution (hypertonic solution) ? Give reason.
(2015)

Ans. (i) As solubility of gases decreases with increase of temperature, less oxygen is
available in summer in the lakes.
(ii) They will shrink. It is due to osmosis.
22. What do you understand by depression of freezing point ? Derive the relationship between depression of freezing point and molar mass of the solute.
(2015)

Ans. $\Delta T_{f}=T_{f}^{0}-T_{f}$
The decrease in freezing point of a solvent due to the dissolution of a non-volatile solute in it is called depression in freezing point.

$$
\begin{aligned}
\Delta T_{f} & =K_{f} m \\
\Delta T_{f} & =K_{f} \times \frac{W_{2} / M_{2}}{W_{1} / 1000} \\
M_{2} & =\frac{K_{f} \cdot W_{2} \times 1000}{W_{1} \cdot \Delta T_{f}}
\end{aligned}
$$

23. What is meant by negative deviation from Raoult's law? Give an example. What is the sign of $\Delta_{\text {mix }} \mathrm{H}$ for negative deviation ?
Ans. When solute- solvent interaction is stronger than pure solvent or solute interaction.
Eg: chloroform and acetone
$\Delta_{\text {mix }} \mathrm{H}=$ negative
24. Define azeotropes. What type of azeotrope is formed by negative deviation from Raoult's law? Give an example.
(2015)

Ans. Azeotropes -binary mixtures having same composition in liquid and vapour phase and boil at constant temperature.

Maximum boiling azeotropes
eg: $\mathrm{HNO}_{3}(68 \%)$ and $\mathrm{H}_{2} \mathrm{O}(32 \%)$
25. (i) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y ?
(ii) What happens when we place the blood cell in water (hypotonic solution) ? Give reason.
(2015)

Ans. (i) Negative deviation, temperature will increase.
(ii) Blood cell will swell due to osmosis, water enters into the cell.
26. How is the vapour pressure of a solvent affected when a non-volatile solute is dissolved in it?
(2015)

Ans. Vapour pressure of a solvent decreases
This is due to fraction of surface area gets covered by non-volatile solute particles.
27. Differentiate between molarity and molality of a solution. How can we change molality
value of a solution into molarity value ?
Ans. Molality - It is defined as the number of moles of the solute per kg of the solvent.
Molarity: Molarity (M) is defined as number of moles of solute dissolved in one litre (or one cubic decimetre) of solution

By converting weight of solvent into volume of solution using density
28. A 1.00 molal aqueous solution of trichloroacetic acid $\left(\mathrm{CCl}_{3} \mathrm{COOH}\right)$ is heated to its boiling point. The solution has the boiling point of $100.18^{\circ} \mathrm{C}$. Determine the van't Hoff factor for trichloroacetic acid. $\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.512 \mathrm{~K} \mathrm{kgmol}^{-1}\right)$
(2012)

Ans. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m} \quad(100.18-100)^{\circ} \mathrm{C}=\mathrm{i} \times 0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 1 \mathrm{~m}$
$0.18 \mathrm{~K}^{2}=\mathrm{i} \times 0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 1 \mathrm{~m}$

$$
i=0.35
$$

29. Define the followingterms:
(i) Mole fraction
(ii) Isotonic solutions
(iii) Van't Hoff factor
(iv) Ideal solution

Ans. (i) Mole fraction is the ratio of number of moles of one component to the total number of moles in a mixture.
(ii) Two solutions having same osmotic pressure at a given temperature are called Isotonic Solutions.
(iii) Van't Hoff factor is expressed as:

$$
\mathrm{i}=\frac{\text { normal molar mass }}{\text { abnormal molar mass }}
$$

(iv) The solution which obeys Raoult's law under all conditions is known as an ideal solution.
30. State the following:
(i) Raoult's law in its general form in reference to solutions.
(ii) Henry's law about partial pressure of a gas in a mixture.

Ans. (i) Raoult's law states that for a solution of volatile liquids, the partial vapour pressure of each component in the solution is directly proprtional to its mole fraction.
(ii) Henry's lawstates that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas over the solution.
31. Differentiate between molality and molarity of a solution. What is the effect of change in temperature of a solution on its molality and molarity?
(2009)

Ans. Molality (m) is the number of moles of the solute per kilogram (kg) of the solvent whereas Molarity is the number of moles of solute present in one litre (or one cubic decimeter) of solution.

Molality is independent of temperature whereas Molarity is function of temperature because volume depends on temperature and the mass does not or Molarity decreases
with increase in temprature
32. State Henry's law correlating the pressure of a gas and its solubility in a solvent and mention two applications for the law.
(2008)

Ans. Henry's law states that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas over the solution.

Applications :
(i) To increase the solubility of CO_{2} in soft drinks and soda water, the bottle is sealed under high pressure.
(ii) Scuba divers must cope with high concentrations of dissolved Nitrogen with breathing air at high pressure underwater. To avoid this air is diluted with He .
(iii) At high altitudes the partial pressure of oxygen is less than that at the ground level. Low blood oxygen causes anoxia.
33. State Raoult's law for solutions of volatile liquid components. Taking a suitable example, explain the meaning of positive deviation from Raoult's law.
(2008)

Ans. Raoult's law states that for a solution of volatile liquids, the partial vapour pressure of each component in the solution is directly proprtional to its mole fraction. When the solute-solvent interaction is weaker than those between the solute-solute and solventsolvent molecules then solution shows positive deviation from Raoults law hence the partial pressure of each component is greater. ex. mixture of ethanol and acetone or carbondisulphide and acetone behave in this manner.
34. Define the term 'osmotic pressure'. Describe how the molecular mass of a substance can be determined on the basis of osmotic pressure measurement.
(2008)

Ans. The extra pressure applied on the solution side that just stops the flow of solvent to solution through semi-permeable membrane is called osmotic pressure of the solution. Here r is the osmotic pressure and R is the gas constant.

$$
\begin{aligned}
\pi & =\left(\mathrm{n}_{2} / \mathrm{V}\right) \mathrm{RT} \\
\pi \mathrm{~V} & =\frac{w_{2} \mathrm{RT}}{\mathrm{M}_{2}} \\
\text { or } \mathrm{M}_{2} & =\frac{w_{2} \mathrm{R} T}{\pi \mathrm{~V}}
\end{aligned}
$$

Thus knowing the quantities $\mathrm{w}_{2}, \mathrm{~T}, \circlearrowright$ and V we can calculate the molar mass of the solute.

3 MARKS

35. A solution containing 8 g of substance in 100 g of diethyl ether boils at $36.86^{\circ} \mathrm{C}$ whereas pure ether boils at $35.60^{\circ} \mathrm{C}$.
Determine the molar mass of the solute. [For ether $\mathrm{Kb}=2.02 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
Ans.

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}^{\circ}-\mathrm{T}_{\mathrm{b}}
$$

$$
\begin{aligned}
& =\frac{\mathrm{K}_{\mathrm{b}} \mathrm{w}_{2} \times 1000}{\mathrm{M}_{2} \times \mathrm{w}_{1}} \\
& =\frac{2.02 \mathrm{~K} \mathrm{Kg} \mathrm{~mol}^{-1} \times 8 \mathrm{~g} \times 1000}{1.26 \mathrm{~K} \times 100 \mathrm{~g}} \\
\mathrm{M}_{2} & =128.25 \mathrm{moll}^{-1}
\end{aligned}
$$

36. A solution 0.1 M of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved to the extent of 95%. What would be its osmotic pressure at $27^{\circ} \mathrm{C} ?\left(\mathrm{R}=0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
(2019)

Ans.

$$
\begin{aligned}
\alpha & =0.95 \\
\alpha & =\frac{i-1}{n-1} \\
0.95 & =\frac{i-1}{3-1} \\
i & =2.9(\text { Or any other method for calculation of } i) \\
\pi & =i \text { CRT }=2.9 \times 0.1 \times 0.0821 \times 300=7.143 \mathrm{~atm} .
\end{aligned}
$$

37. A solution containing 1.9 g per 100 mL of $\mathrm{KCl}\left(\mathrm{M}=74.5 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is isotonic with a solution containing 3 g per 100 mL of urea ($\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}$). Calculate the degree of dissociation of KCl solution.
(2019)

Assume that both the solutions have same temperature.
Ans.

$$
\begin{aligned}
\pi_{1}(\text { urea }) & =\pi_{2}(\mathrm{KCl}) \\
\mathrm{C}_{1} R T & =\mathrm{i} C_{2} R T \\
\frac{\mathrm{n}_{1}}{\mathrm{v}_{1}} & =\mathrm{i} \frac{\mathrm{n}_{2}}{\mathrm{v}_{2}}\left(\mathrm{v}_{1}=\mathrm{v}_{2}\right) \\
\frac{3}{60} & =\mathrm{i} \times \frac{1.9}{74.5} \\
\mathrm{i} & =1.96 \\
\alpha & =\frac{i-1}{\mathrm{n}-1}=\frac{1.96-1}{2-1} \\
& =0.96 \text { or } 96 \%
\end{aligned}
$$

38. A 4% solution(w/w) of sucrose ($\mathrm{M}=342 \mathrm{~g} \mathrm{~mol}^{-1}$) in water has a freezing point of 271.15 K. Calculate the freezing point of 5% glucose ($\mathrm{M}=180 \mathrm{~g} \mathrm{~mol}^{-1}$) in water.
(Given : Freezing point of pure water $=273.15 \mathrm{~K}$)
(2019)

Ans.

$$
\begin{aligned}
\Delta \mathrm{T}_{f} & =\mathrm{K}_{f} \mathrm{~m} \\
\mathrm{~K}_{f} & =\Delta \mathrm{T}_{f} \times \frac{\mathrm{M}_{2} \times \mathrm{W}_{1}}{\mathrm{~W}_{2} \times 1000}=\frac{2 \times 342 \times 96}{4 \times 1000}=16.4 \mathrm{~K} \\
\Delta \mathrm{~T}_{f} & =\mathrm{K}_{f} \mathrm{~m} \\
\mathrm{~K}_{f} & =\frac{\mathrm{W}_{2} \times 1000}{\mathrm{M}_{2} \times \mathrm{W}_{1}}=\frac{16.4 \times 5 \times 1000}{95 \times 180}=4.8 \mathrm{~K} \\
\Delta \mathrm{~T}_{f} & =\mathrm{T}_{f}^{\circ}-\mathrm{T}_{f}
\end{aligned}
$$

$$
\begin{aligned}
4.8 & =273.15-\mathrm{T}_{f} \\
\mathrm{~T}_{f} & =268.35 \mathrm{~K}
\end{aligned}
$$

39. Give reasons for the following :
(a) Measurement of osmotic pressure method is preferred for the determination of molar masses of macromolecules such as proteins and polymers.
(b) Aquatic animals are more comfortable in cold water than in warm water.
(c) Elevation of boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.

Ans. (a) 1) As compared to other colligative properties, its magnitude is large even for very dilute solutions.
2) Pressure measurement is around the room temperature and the molarity of the solution is used instead of molality.
(b) Because oxygen is more soluble in cold water or at low temperature.
(c) Due to dissociation of $\mathrm{KCl} / \mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{K}^{+}+\mathrm{Cl}^{-}$, i is nearly equal to 2
40. Calculate the freezing point of an aqueous solution containing 10.5 g of Magnesium bromide in 200 g of water, assuming complete dissociation of Magnesium bromide.
(Molar mass of Magnesium bromide $=184 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{~K}_{\mathrm{f}}$ for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$).
Ans.

$$
\begin{align*}
\text { Moles for } \mathrm{MgBr}_{2} & =\frac{10.5}{184} 0.0571 \mathrm{~mol} \tag{2018}\\
\text { Molality } & =\frac{0.0571}{200} \times 1000=0.2855 \mathrm{~m} \\
\mathrm{i} & =3 \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\
& =3 \times 1.86 \times 0.2855=1.59 \mathrm{~K} \\
\text { Freezing point } & =273-1.59=271.41 \mathrm{~K}
\end{align*}
$$

41. Calculate the mass of a non-volatile solute (molar mass $40 \mathrm{~g} / \mathrm{mol}$) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
(2017)

Ans. If vapour pressure of pure liquid is $=P_{0}$
80% of pure liquid $P_{s}=80 \times P_{0} / 100=0.8 P_{0}$
$P_{S}=P_{0} \times X_{\text {solute }}$
mass of solute $=x$ gram, \quad And mass of solvent $=114 \mathrm{~g}$
Molar mass of solute $=40 \mathrm{~g} / \mathrm{mol}$
Molar mass of solvent (octane $\mathrm{C}_{8} \mathrm{H}_{18}$) $=114 \mathrm{~g} / \mathrm{mol}$
Number of moles of solute $=x / 40=0.025 x$

Number of moles of solvent $=114 / 114=1$ moles
Mole fraction of solvent $=1 /(1+0.025 x)$
$0.8 \mathrm{P}_{0}=\mathrm{P}_{0} \times 1 /(1+0.025 \mathrm{x})$
Cross multiply we get, $(1+0.025 x) 0.8 P_{0}=P_{0}$
Divide by $0.8 P_{0}$ we get, $\quad 1+0.025 x=1.25$
Subtract 1 both side we get, $\quad 0.025 x=0.25$
Now divide by 0.025 we get, $\quad x=10 \mathrm{~g}$
42. At $300 \mathrm{~K}, 36 \mathrm{~g}$ of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ present per litre in its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of another glucose solution is 1.52 bar at the same temperature, calculate the concentration of the other solution.
(2017)

Ans. $\pi V=C R T$
$4.98=36 / 180 \times R \times 300=60 R$
$1.52=C \times R \times 300$
Divide (ii) by (i), $\mathrm{C}=0.061 \mathrm{M}$
43. A 10% solution (by mass) of sucrose in water has freezing point of 269.15 K . Calculate the freezing point of 10% glucose in water, if freezing point of pure water is 273.15 K .

Given : (Molar mass of sucrose $=342 \mathrm{~g} \mathrm{~mol}^{-1}$, Molar mass of glucose $=180 \mathrm{~g} \mathrm{~mol}^{-1}$)
Ans.

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m} \tag{2017}
\end{equation*}
$$

$$
\text { Here, } m=w_{2} \times 1000 / M_{2} X M_{1}
$$

$$
273.15-269.15=K_{f} \times 10 \times 1000 / 342 \times 90
$$

$$
\begin{aligned}
\Rightarrow \mathrm{K}_{\mathrm{f}} & =12.3 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \mathrm{~m}=12.3 \times 10 \times 1000 / 180 \times 90=7.6 \mathrm{~K} \\
\mathrm{~T}_{\mathrm{f}} & =273.15-7.6=265.55 \mathrm{~K}
\end{aligned}
$$

44. A solution of glucose (Molar mass $=180 \mathrm{~g} \mathrm{~mol}^{-1}$) in water has a boiling point of $100 \cdot 20^{\circ} \mathrm{C}$. Calculate the freezing point of the same solution. Molal constants for water K_{f} and K_{b} are $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and $0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ respectively.
(2017)

Ans. Given: T_{b} of glucose solution $=100.20^{\circ} \mathrm{C}$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}} \cdot \mathrm{~m} \\
\mathrm{~m} & =0.20 / 0.512=0.390 \mathrm{~mol} / \mathrm{kg} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \cdot \mathrm{~m} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times 0.390 \mathrm{~mol} / \mathrm{kg}=0.725 \mathrm{~K}
\end{aligned}
$$

Freezing point of solution $=273.15 \mathrm{~K}-0.725=272.425 \mathrm{~K}$
45. 3.9 g benzoic acid dissolved in 49 g of benzene shows a depression in freezing point of 1.62 K . Calculate the van't Hoff factor and predict the nature of solute (associated/ dissociated).
[Given : Molar mass of Benzoic Acid $=122 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{~K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$] (2017)
Ans.

$$
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m}
$$

Here, $m=w_{2} \times 1000 / M_{2} X M_{1}$

$$
\begin{aligned}
1.62 & =\frac{i \times 1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times 3.9 \mathrm{~g} \times 1000}{122 \mathrm{~g} / \mathrm{mol} \times 49} \\
i & =\frac{1.62 \times 122 \times 49}{1.86 \times 3.9 \times 1000}=1.33
\end{aligned}
$$

As $\mathrm{i}>1$, the solute particles gets dissociated.
46. Calculate the boiling point of a 1 M aqueous solution (density $1.04 \mathrm{~g} \mathrm{~mL}^{-1}$) of Potassium chloride $\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Aromic masses: $\mathrm{K}=39 \mathrm{u}, \mathrm{Cl} 39.9 \mathrm{u}$)
Assume, Potassium chloride is completely dissociated in solution
Ans. Molar mass of $\mathrm{KCl}=39+35.5=74.5 \mathrm{~g} \mathrm{~mol}^{-1}$
As KCl dissociates completely, number of ions produced are 2.
Therefore, van't Hoff factor, $\mathrm{i}=2$
Mass of KCl solution $=1000 \times 1.04=1040 \mathrm{~g}$
Mass of solvent $=1040-74.5=965.5 \mathrm{~g}=0.9655 \mathrm{~kg}$
Molality of the solution $=\frac{\text { No.of moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}=\frac{1 \mathrm{~mol}}{0.9655 \mathrm{~kg}}=1.0357 \mathrm{~m}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \mathrm{m}=2 \times 0.52 \times 1.0357=1.078^{\circ} \mathrm{C}$
Therefore, boiling point of solution $=100+1.078=101.078^{\circ} \mathrm{C}$
47. Calculate the freezing point of solution when 2 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{M}=142 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ was dissolved in 50 g of water, assuming $\mathrm{Na}_{2} \mathrm{SO}_{4}$ undergoes complete ionization.
(K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
Ans.

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \tag{2016}
\end{equation*}
$$

For complete ionisation of $\mathrm{Na}_{2} \mathrm{SO}_{4}, \quad i=3$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}^{\circ}-\mathrm{T}_{\mathrm{f}}=3 \times 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{2 \mathrm{~g}}{142 \mathrm{~g} \mathrm{~mol}^{-1}} \times \frac{1000 \mathrm{~g} \mathrm{~kg}^{-1}}{50 \mathrm{~g}} \\
& \Delta \mathrm{~T}_{\mathrm{f}}=1.57=271.43 \mathrm{~K}
\end{aligned}
$$

48. Calculate the boiling point of solution when $4 \mathrm{~g}^{\text {of }} \mathrm{MgSO}_{4}\left(\mathrm{M}=120 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ was dissolved in 100 g of water, assuming MgSO_{4} undergoes complete ionization. $\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

Ans.

$$
\begin{equation*}
i=2 \tag{2016}
\end{equation*}
$$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{i} \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{~m} \\
& =\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w}_{2} \times 1000}{\mathrm{M} \times \mathrm{W}_{1}} \\
& =2 \times 0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{4 \mathrm{~g} \times 1000 \mathrm{~g} / \mathrm{kg}}{120 \mathrm{~g} / \mathrm{mol} \times 100 \mathrm{~g}} \\
& =\frac{2 \times 0.52}{3}=0.346 \mathrm{~K}
\end{aligned}
$$

Boiling point of water $=373.15 \mathrm{~K}$

$$
\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}{ }^{\circ}+\Delta \mathrm{T}_{\mathrm{b}}=373.15 \mathrm{~K}+0.346 \mathrm{~K}=373.496 \mathrm{~K}
$$

49. Calculate the freezing point of a solution when 3 g of $\mathrm{CaCl}_{2}\left(\mathrm{M}=111 \mathrm{~mol}^{-1}\right)$ was dissolved in 100 g of water, assuming CaCl_{2} undergoes Complete ionization.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
Ans. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \frac{\mathrm{W}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{B}}} \times \frac{1000}{\mathrm{~W}_{\mathrm{A}}} \\
\Delta \mathrm{~T}_{f} & =3 \times 1.86 \times \frac{3}{111} \times \frac{1000}{100}=1.50 \mathrm{k} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}} \\
\mathrm{~T}_{\mathrm{f}} & =\mathrm{T}_{\mathrm{f}}^{0}-\Delta \mathrm{T}_{\mathrm{f}}=273.15-1.50=271.65 \mathrm{~K}
\end{aligned}
$$

50. Calculate the boiling point of solution when 2 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{M}=142 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ was dissolved in 50 g of water, assuming $\mathrm{Na}_{2} \mathrm{SO}_{4}$ undergoes complete ionization. (2016)
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
Ans. $\Delta T_{b}=i \frac{K_{b} W_{b} \times 1000}{M_{b} \times W_{a}}$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\frac{3 \times 0.52 \times 2 \times 1000}{142 \times 50}=0.439 \mathrm{~K} \\
\Delta \mathrm{~Tb} & =\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0} \\
\mathrm{~T}_{\mathrm{b}} & =0.439+373=373.439 \mathrm{~K}
\end{aligned}
$$

51. When 1.5 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point of benzene raised from 353.23 K to 353.93 K . Calculate the molar mass of the solute. $\left(\mathrm{K}_{\mathrm{b}}\right.$ for benzene $\left.=2.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
Ans.

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}} \mathrm{~m} \\
\Delta \mathrm{~T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}}\left(\frac{\mathrm{~W}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}}}\right) \\
353.93-353.23 & =\frac{2.52 \times 1.5 \times 1000}{\mathrm{M}_{\mathrm{B}} \times 90} \\
\mathrm{M}_{\mathrm{B}} & =\frac{2.52 \times 1.5 \times 1000}{0.7 \times 90}=60.0 \mathrm{~g} \mathrm{~mol}^{-1} .
\end{aligned}
$$

52. 3.9 g of benzoic acid dissolved in 49 g of benzene shows a depression in freezing point of 1.62 K . Calculate the van't Hoff factor and predict the nature of solute (associated or dissociated).
(2015)
(Given : Molar mass of benzoic acid $=122 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{~K}_{\mathrm{f}}$ for benzene $=4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
Ans.

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{~m} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{i} \mathrm{~K}_{\mathrm{f}} \mathrm{mb} \frac{\mathrm{~m}_{\mathrm{b}} \times 1000}{\mathrm{M}_{\mathrm{b}} \times \mathrm{m}_{\mathrm{a}}} \\
1.62 \mathrm{~K} & =\mathrm{i} \times 4.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{3.9 \mathrm{~g}}{122 \mathrm{gmol}^{-1}} \times \frac{1000}{49 \mathrm{~kg}} \\
\Rightarrow \mathrm{i} & =0.506
\end{aligned}
$$

As $\mathrm{i}<1$, therefore solute gets associated.
53. Vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mm of Hg . Calculate the vapour pressure of water at $20^{\circ} \mathrm{C}$ when 15 g of glucose (molar mass $=180 \mathrm{~g} \mathrm{~mol}^{-1}$) is dissolved in 150 g of water.
(2015)

Ans.

$$
\begin{aligned}
\frac{P_{1}{ }^{0}-P_{1}}{P_{1}{ }^{0}} & =\frac{w_{2} \times M_{1}}{M_{2} \times w_{1}} \\
\frac{17.5-P_{1}}{17.5} & =\frac{15 / 180}{\frac{15}{180}+\frac{150}{18}} \\
& =\frac{15}{1515}=0.01 \\
17.5-P_{1} & =0.01 \times 17.5 \\
17.5-0.175 & =P_{1} \\
P_{1} & =17.325 \mathrm{~mm} \text { of } \mathrm{Hg}
\end{aligned}
$$

54. Calculate the mass of NaCl (molar mass $=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$) to be dissolved in 37.2 g of water to lower the freezing point by $2^{\circ} \mathrm{C}$, assuming that NaCl undergoes complete dissociation. $\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

Ans.

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\text { i. } \mathrm{K}_{\mathrm{f}} \mathrm{~m}=\mathrm{i} \mathrm{~K}_{\mathrm{f}} \frac{\mathrm{w}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{w}_{\mathrm{A}}} \\
2 \mathrm{~K} & =\frac{2 \times 1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \times \mathrm{w}_{\mathrm{B}} \times 1000}{58.5 \mathrm{~g} / \mathrm{mil} \times 37.2 \mathrm{~g}} \\
\Rightarrow \mathrm{w}_{\mathrm{B}} & =1.17 \mathrm{~g}
\end{aligned}
$$

55. A solution is prepared by dissolving 10 g of non-volatile solute in 200 g of water. It has a vapour pressure of 31.84 mm Hg at 308 K . Calculate the molar mass of the solute. (Vapour pressure of pure water at $308 \mathrm{~K}=32 \mathrm{~mm} \mathrm{Hg}$)

Ans.

$$
\begin{aligned}
\frac{p^{0}-p}{p^{0}} & =\frac{w_{s} \times M \text { solvent }}{M_{s} \times W \text { solvent }} \\
(32-31.84) / 32 & =10 \times 18 / \mathrm{Ms} \times 200 \\
\Rightarrow M_{s} & =180 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

56. Some ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, is added to your car's cooling system along with 5 kg of water. If the freezing point of water-glycol solution is $-15.0^{\circ} \mathrm{C}$, what is the boiling point of the solution?

$$
\begin{equation*}
\left(\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \text { and } \mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \text { for water }\right) \tag{2015}
\end{equation*}
$$

Ans.

$$
\begin{aligned}
\mathrm{m} \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} & =\frac{\Delta \mathrm{T}_{\mathrm{f}}}{\mathrm{~K}_{\mathrm{f}}}=\frac{15.0^{\circ} \mathrm{C}}{1.86^{\circ} \mathrm{C} / \mathrm{m}}=8.06 \mathrm{~m} \\
\Delta \mathrm{~T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}} \mathrm{mHOCH} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{OH} \\
& =\left(0.52^{\circ} \mathrm{C} / \mathrm{m}\right)(8.06 \mathrm{~m})=4.19^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{b}} & =100.00^{\circ} \mathrm{C}+4.19^{\circ} \mathrm{C}=104.19^{\circ} \mathrm{C}
\end{aligned}
$$

57. Calculate the amount of KCl which must be added to 1 kg of water so that the freezing point is depressed by 2 K . $\left(\mathrm{K}_{\mathrm{f}}\right.$ forwater $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(2012)

Ans. Since one mole of KCl gives 2 mole particles, the value of $\mathrm{i}=2$

$$
\Delta \mathrm{T}_{f}=2 \mathrm{~K}, \mathrm{~K}_{f}=1.86 \mathrm{~kg} \mathrm{~mol}^{-1}
$$

Applying equation, $\Delta \mathrm{T}_{f}=\mathrm{iK}_{f} \mathrm{~m}$

$$
\mathrm{m}=\frac{\Delta \mathrm{T}_{f}}{\mathrm{iK}_{f}}=\frac{2}{2 \times 186}=0.54 \mathrm{~mol} \mathrm{~kg}^{-1} .
$$

Therefore, 0.54 mole of KCl should be added to one kg of water.
Molar mass of $\mathrm{KCI}=39+35.5=74.5 \mathrm{~g}$
Amount of $\mathrm{KCI}=0.54 \times 74.5 \mathrm{~g}=40.05 \mathrm{~g}$
58. A solution prepared by dissolving 8.95 mg of a gene fragment in 35.0 mL . of water has an osmotic pressure of 0.335 torr at $25^{\circ} \mathrm{C}$.Assuming that the gene fragment is a nonelectrolyte, calculate its molar mass.
(2011)

Ans. $\pi=\mathrm{CRT}$
$M_{2}=\frac{W_{2} R T}{\pi V}$
$\mathrm{M}_{2}=\frac{8.95 \times 10^{-3} \mathrm{~g} \times 0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K} \times 760 \times 1000}{0.335 \mathrm{~atm} \times 35 \mathrm{~L}}$
$M_{2}=14193.3 \mathrm{~g} \mathrm{~mol}^{-1}$ or $1.42 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$
59. 100 mg of a protein is dissolved in just enough water to make 10.0 mL of solution. If this solution has an osmotic pressure of 13.3 mm Hg at $25^{\circ} \mathrm{C}$, what is the molar mass of the protein?
(2009)

Ans. $\pi=\mathrm{CRT}$
$M_{2}=\frac{W_{2} R T}{\pi V}$
$M_{2}=\frac{100 \times 10^{-3} \mathrm{~g} \times 0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 298 \mathrm{~K} \times 760 \times 1000}{13.3 \mathrm{~atm} \times 10 \mathrm{~L}}$
$M_{2}=13980 \mathrm{~g} \mathrm{~mol}^{-1}$ or $1.4 \times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$
60. A solution containing 8 g of a substance in 100 g of diethyl ether boils at $36.86^{\circ} \mathrm{C}$, whereas pure ether boils at $35.60^{\circ} \mathrm{C}$. Determine the molecular mass of the solute.
(For ether $\mathrm{K}_{\mathrm{b}}=2.02 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
(2008)

Ans. $\quad \Delta \mathrm{T}_{\mathrm{b}}=(36.86-35.60)^{\circ} \mathrm{C}=1.26^{\circ} \mathrm{C}$ or 1.26 K
No. of moles of solute $=\frac{8 \mathrm{~g}}{\mathrm{M}}$
Molality of Glucose solution $=\frac{8 \mathrm{~g}}{\mathrm{M}} \times \frac{1000}{100 \mathrm{~kg}}$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{b}} & =\mathrm{K}_{\mathrm{b}} \mathrm{~m} \\
1.26 \mathrm{~K} & =2.02 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{8 \mathrm{~g}}{\mathrm{M}} \times \frac{1000}{100 \mathrm{~kg}} \\
\mathrm{M} & =128.25 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Where M is molar mass of the solute
61. Calculate the temperature at which a solution containing 54 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, in 250 g of water will freeze. $\left[\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$

Ans. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}$
No. of moles of glucose $=\frac{54 \mathrm{~g}}{180 \mathrm{~g} \mathrm{~mol}^{-1}}$
Molality of Glucose solution $=\frac{54 \mathrm{~mol}}{180} \times \frac{1000}{250 \mathrm{~kg}}=1.20 \mathrm{~mol} \mathrm{~kg}^{-1}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 1.20 \mathrm{~mol} \mathrm{~kg}^{-1}=2.23 \mathrm{~K}^{2}$
Temp. at which solution freezes $=(273.15-2.23) \mathrm{K}=270.77 \mathrm{~K}$ or $-2.23^{\circ} \mathrm{C} /$

5 MARKS

62. (a) A solution contains 5.85 g NaCl (Molar mass $=58.5 \mathrm{~g} \mathrm{~mol}^{-1}$) per litre of solution. It has an osmotic pressure of 4.75 atm at $27^{\circ} \mathrm{C}$.
(2020)

Calculate the degree of dissociation of NaCl in this solution.
(Given : R $=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
(b) State Henry's law. Why is air diluted with helium in the tanks used by scuba divers?

Ans. (a) Given:
Weight of NaCl given $=5.85 \mathrm{~g}$
molecular mass of $\mathrm{NaCl}=58.5 \mathrm{~g} / \mathrm{mol}$
Osmatic pressure $=4.75 \mathrm{~atm}$
Temperature $\mathrm{T}=27^{\circ} \mathrm{C}=(27+273) \mathrm{K}=300 \mathrm{~K}$
We know that, $\pi=\mathrm{iCRT}, \mathrm{C}=\frac{5.85}{58.5 \times 1} \mathrm{M}$

$$
\begin{aligned}
4.75 & =\frac{i \times 5.85}{58.5 / 1} \times 0.082 \times 300 \\
i & =\frac{4.75 \times 58.5}{5.85 \times 0.082 \times 300}=1.93
\end{aligned}
$$

For dissociation,

$$
\begin{aligned}
\mathrm{i} & =1+\alpha(\mathrm{n}-1) \quad \text { Here } \mathrm{n}=2 \\
1.93 & =1+(2-1) \alpha \\
1+\alpha & =1.93 \\
\alpha & =1.93-1=0.93 \text { or } 93 \%
\end{aligned}
$$

(b) Henry's law: At a constant temperature, the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas present above the surface of liquid or solution.

Air diluted with helium in the tanks used by scuba divers to avoid bends, as well as, the toxic effects of high concentrations of nitrogen in the blood because of increase in pressure underwater and decreasing pressure towards the water surface.
63. (a) When 19.5 g of $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$ (Molar mass $=78 \mathrm{~g} \mathrm{~mol}^{-1}$) is dissolved in 500 g of water, the depression in freezing point is observed to be $1^{\circ} \mathrm{C}$. Calculate the degree of dissociation of $\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}$. [Given : K_{f} for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
(b) Give reasons :
(i) 0.1 M KCl has higher boiling point than 0.1 M Glucose.
(ii) Meat is preserved for a longer time by salting.

Ans.

$$
\text { mass of solute }=19.5 \mathrm{~g}
$$

molar mass of solute $\left(\mathrm{F}-\mathrm{CH}_{2}-\mathrm{COOH}\right)=78 \mathrm{gmol}^{-1}$

$$
\begin{aligned}
\text { mass of solvent } & =500 \mathrm{~g} ; \mathrm{K}_{\mathrm{f}}=1.86 \mathrm{k} \mathrm{Kg} \mathrm{~mol}^{-1} \\
\text { depression in freezing point } & =1^{\circ} \mathrm{C}
\end{aligned}
$$

degree of dissociation of solute $=$?
No. of moles of solute $=\frac{19.5}{78}=0.25$
molality is the no. of moles of solute in 1 Kg of Solvent
molality $=\frac{0.25}{\frac{500}{1000}}=0.50 \mathrm{~m}$

Calculated depression in freezing point ;

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \times \mathrm{m}=1.86 \times 0.50=0.93 \mathrm{~K} \\
\mathrm{i} & =\frac{\text { Observed freezing point }}{\text { Calculated freezing point }}=\frac{1.0}{0.93}=1.0753
\end{aligned}
$$

Let, C is the initial conc. of fluoroacetic acid and α be its degree of dissociation.
$\mathrm{CH}_{2} \mathrm{FCOOH} \longrightarrow \mathrm{CH}_{3} \mathrm{FCOO}^{-}+\mathrm{H}^{+}$
$\mathrm{C}(1-\mathrm{a}) \quad \mathrm{Ca} \quad \mathrm{Ca}$

$$
\begin{aligned}
\text { Total no. of moles } & =C(1-a)+C a+C a=C(1+a) \\
1.0753 & =1+a \\
a & =0.0753
\end{aligned}
$$

(b) (i) KCl dissociates in the solution and forms ions K^{+}and Cl^{-}and glucose does not dissociate. Since boiling point is a colligative property and depends on number of particles. Therefore, 0.1 M KCl has higher boiling point than 0.1 M glucose.
(ii) Meat is preserved for a longer time by salting to protect it against bacterial action.
64. (a) A solution is prepared by dissolving 5.0 g of a non-volatile solute in 95 g of water. It has a vapour pressure of 23.375 mm of Hg at $25^{\circ} \mathrm{C}$. Calculate the molar mass of the solute. Vapour pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.75 mm of Hg .
(2018)
(b) Give reasons for the following :
(i) Osmotic pressure is considered to be a colligative property.
(ii) Molality is a better option to express concentration in comparison to molarity.

Ans. (a)

$$
\begin{aligned}
\frac{P_{1}{ }^{0}-P_{1}}{P_{1}{ }^{0}} & =\frac{w_{2} \times M_{1}}{M_{1} \times w_{2}} \\
\frac{23.75-23.375}{23.75} & =\frac{5 \times 18}{M_{2} \times 95} \\
\Rightarrow \quad M_{2} & =60 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

(b) (i)The value of osmotic pressure at a given temperature is directly proportional to the number of moles of the solute.
(ii) Molality of a solution does not change with temperature as it involves mass.
65. (a) Calculate the amount of CaCl_{2} (molar mass $=111 \mathrm{~g} \mathrm{~mol}^{-1}$) which must be added to 500 g of water to lower its freezing point by 2 K , assuming CaCl_{2} is completely dissociated. $\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(b) (i) What happens when blood cells are placed in distilled water?
(ii) Why is increase in temperature observed on mixing chloroform with acetone?

Ans.

$$
\begin{align*}
\Delta \mathrm{T}_{\mathrm{f}} & =i \mathrm{~K}_{\mathrm{f}} \mathrm{w}_{2} \times 1000 / \mathrm{M}_{2} \times \mathrm{w}_{1} \tag{1}\\
\mathrm{i} & =3 \\
(1) \Rightarrow 2 & =3 \times 1.86 \times \frac{\mathrm{w}_{2} \times 100}{111 \times 500} \\
\Rightarrow \mathrm{w}_{2} & =\frac{2 \times 111 \times 500}{3 \times 1.86 \times 1000}=19.89 \mathrm{~g}
\end{align*}
$$

b)(i) Due to osmosis, water enters into the cell due to which the blood cells swell and even burst.
(ii) On mixing, chloroform and acetone molecules develop hydrogen bonding resulting in release of energy, so the temperature rises.
66. (a) A 10% solution (by mass) of sucrose in water has a freezing point of $269 \cdot 15 \mathrm{~K}$. Calculate the freezing point of 10% glucose in water if the freezing point of pure water is 273.15 K . Given :
(Molar mass of sucrose $=342 \mathrm{~g} \mathrm{~mol}^{-1}$, Molar mass of glucose $=180 \mathrm{~g} \mathrm{~mol}^{-1}$)
(b) Define the following terms:
(i) Molality (m)
(ii) Abnormal molar mass

Ans. (a)

$$
\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{~m}
$$

Here , $m=w_{2} \times 1000 / M_{2} \times M_{1}$

$$
\Rightarrow 273.15-269.15=\mathrm{K}_{\mathrm{f}} \times 10 \times 1000 / 342 \times 90
$$

$$
\begin{aligned}
\Rightarrow \mathrm{K}_{\mathrm{f}} & =12.3 \mathrm{~K} \mathrm{~kg} / \mathrm{mol} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{K}_{\mathrm{f}} \mathrm{~m}=12.3 \times 10 \times 1000 / 180 \times 90=7.6 \mathrm{~K}
\end{aligned}
$$

$$
T_{f}=273.15-7.6=265.55 \mathrm{~K}
$$

(b) (i) Number of moles of solute dissolved in per kilogram of the solvent.
(ii) Abnormal molar mass: If the molar mass calculated by using any of the colligative properties to be different than theoretically expected molar mass.
67. (a) 30 g of urea $\left(\mathrm{M}=60 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is dissolved in 846 g of water. Calculate the vapour pressure of water for this solution if vapour pressure of pure water at 298 K is 23.8 mm Hg .
(b) Write two differences between ideal solutions and non-ideal solutions.

Ans. (a) $\quad\left(P_{A}^{0}-P_{A}\right) / P_{A}^{0}=\left(w_{B} \times M_{A}\right) /\left(M_{B} \times w_{A}\right)$

$$
\begin{aligned}
& \frac{23.8-P_{A}}{23.8}=(30 \times 18) / 60 \times 846 \\
& 23.8-P_{A}=23.8 \times[(30 \times 18) / 60 \times 846]
\end{aligned}
$$

$$
\begin{aligned}
23.8-P_{A} & =0.2532 \\
\Rightarrow P_{A} & =23.55 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

(b)

Ideal solution	Non ideal solution
(a) It obeys Raoult's law over the entire range of concentration.	(a) Does not obey Raoult's law over the entire range of concentration.
(c) $\Delta_{\text {mix }} H=0$	(c) $\Delta_{\text {mix }} H$ is not equal to 0.
(c) $\Delta_{\text {mix }} V=0$.	(c) $\Delta_{\text {mix }} V$ is not equal to 0.

 dissolved in 50 g of water, assuming MgCl_{2} undergoes complete ionization.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $\left.=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(b) (i) Out of 1 M glucose and 2 M glucose, which one has a higher boiling point and why?
(ii) What happens when the external pressure applied becomes more than the osmotic pressure of solution?

Ans. (a) $\quad \Delta T_{f}=i \frac{K_{f} w_{b} \times 1000}{M_{b} \times W_{A}}$

$$
\Delta T_{f}=3 \times(1.86 \times 1.9 / 95 \times 50) \times 1000=2.23 \mathrm{~K}
$$

$$
T_{f}-\Delta T_{f}=273.15-2.23
$$

$$
\Rightarrow \quad \mathrm{T}_{\mathrm{f}}=270.92 \mathrm{~K}
$$

(b) (i) 2M glucose ; More Number of particles / less vapour pressure
(ii) Reverse Osmosis
69. (a) When 2.56 g of sulphur was dissolved in 100 g of CS_{2}, the freezing point lowered by 0.383 K . Calculate the formula of sulphur $\left(\mathrm{S}_{\mathrm{x}}\right)$.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for $\mathrm{CS}_{2}=3.83 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic mass of Sulphur $=32 \mathrm{~g} \mathrm{~mol}^{-1}$]
(b) Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
(i) 1.2% sodium chloride solution ?
(ii) 0.4% sodium chloride solution?

Ans. (a) $\Delta T_{f}=\frac{K_{f} w b \times 1000}{M_{b} \times W_{A}}$
$0.383=(3.83 \times 2.56 / \mathrm{M} \times 100) \times 1000$
$\Rightarrow M=256$
$S \times x=256$

$$
32 \times x=256 \Rightarrow x=8
$$

(b) (i) Shrinks
(ii) swells
70. (a) Calculate the boiling point of solution when $2 \mathrm{~g} \mathrm{of}_{2} \mathrm{Na}_{2}\left(\mathrm{M}=142 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ was dissolved in 50 g of water, assuming $\mathrm{Na}_{2} \mathrm{SO}_{4}$ undergoes complete ionization.
$\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(b) Define the following terms:
(i) Colligative properties (ii) Ideal solution
(2016)

Ans. (a) $\quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$

$$
\Delta T_{b}=i \frac{K_{b} W_{b} \times 1000}{M_{b} \times W_{a}}
$$

$$
\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}^{0}=\frac{3 \times 0.52 \mathrm{k} \mathrm{~kg} / \mathrm{mol} \times 2 \times 1000 \mathrm{~g} \mathrm{~kg}^{-1}}{142 \mathrm{~g} / \mathrm{mol} \times 50 \mathrm{~g}}
$$

$$
\mathrm{T}_{\mathrm{b}}-373 \mathrm{~K}=0.44 \mathrm{~K}
$$

$$
\Rightarrow \mathrm{T}_{\mathrm{b}}=373.44 \mathrm{~K}=100.44^{\circ} \mathrm{C}
$$

(b) (i) Properties of dilute solutions that depend on the number of particles of solute but not on nature of the solute particles are called colligative properties.
(ii) The solutions which obey Raoult's law over the entire range of concentration are known as ideal solutions.
71. (a) What is van't Hoff factor? What types of values can it have if in forming the solution the solute molecules undergo
(i) Dissociation?
(ii) Association?
(b) How many mL of a 0.1 M HCl solution are required to react completely with 1 g of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} containing equimolar amounts of both?
(Molar mass: $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}, \mathrm{NaHCO}_{3}=84 \mathrm{~g}$)
Ans. (a) $i=\frac{\text { Normal molar mass }}{\text { Abnormal molar mass }}$
$\mathrm{i}=\frac{\text { Total number of moles of particles after association/dissociation }}{\text { Number of moles of particles before association/dissociation }}$
(i) For dissociation, $\mathrm{i}>1$
(ii) For association, i < 1
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
A mixture of $1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~mol} \mathrm{NaHCO}_{3}$ reacts with 3 mol of HCl
$1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 \mathrm{~mol} \mathrm{NaHCO}_{3}=106+84=190 \mathrm{~g}$
190 g mixture reacts completely with 3 mol HCl
Mol of HCl that will reacts with $1 \mathrm{~g}=\frac{3 \mathrm{~mol}}{190 \mathrm{~g}} \times 1 \mathrm{~g}=\frac{3}{190} \mathrm{~mol}=\frac{3 \times 10^{3}}{190} \mathrm{~m} \mathrm{~mol}$
We know that, Molality x volume $(\mathrm{ml})=$ no. of m mole

$$
\text { i.e., } \begin{aligned}
0.1 \times \mathrm{V}_{\mathrm{HCl}} & =\frac{3 \times 10^{3}}{190} \\
\mathrm{~V}_{\mathrm{HCl}} & =\frac{3 \times 10^{3}}{190 \times 0.1}=157.9 \mathrm{~mL}
\end{aligned}
$$

72. (a) Define
(i) Mole fraction
(ii) Molality
(iii) Raoult's law
(b) Assuming complete dissociation, calculate the expected freezing point of a solution prepared by dissolving 6.00 g of Glauber's salt, $\mathrm{Na}_{2} \mathrm{SO}_{4} .10 \mathrm{H}_{2} \mathrm{O}$ in 0.100 kg of water.
$\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Atomic masses: $\mathrm{Na}=23, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)
Ans. (a) (i) It is defined as the number of moles of the component to the total number of moles of all the components.

Mole fraction of a component $=\frac{\text { Number of moles of the component }}{\text { Total number of moles of all the components }}$
(ii) It is defined as the number of moles of the solute per kg of the solvent.

$$
\text { Molality }(\mathrm{m})=\frac{\text { Moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}
$$

(iii) According to Raoult's law, the partial pressure of a volatile component or gas is directly proportional to its mole fraction in solution.
(b) Molar mass of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

$$
=2 \times 23+32+16 \times 4+10 \times 2+16 \times 10=322 \mathrm{~g} \mathrm{~mol}^{-1}
$$

No. of mol $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ dissolved in 01.10 kg of water

$$
=\frac{6.00 \mathrm{~g}^{-1}}{322 \mathrm{~g} \mathrm{~mol}^{-1}}=\frac{6}{322} \mathrm{~mol}
$$

Since there is complete dissociation, van't Hoff factor, $\mathrm{i}=3$
$\Delta T_{f}=i K_{f} m=i \times K_{f} \times n_{b} / w_{A}$

$$
=\frac{3 \times(1.86 \mathrm{~kg} \mathrm{~mol}) \times \frac{6}{322} \mathrm{~mol}}{0.10 \mathrm{~kg}}=1.04 \mathrm{~K}
$$

Freezing point $=273.15 \mathrm{~K}-1.04 \mathrm{~K}=272.11 \mathrm{~K}$
73. (a) Define the following terms:
(i) Mole fraction
(ii) Ideal solution
(b) 15.0 g of an unknown molecular material is dissolved in 450 g ofwater. The resulting solution freezes at $0.34^{\circ} \mathrm{C}$. What is the molar mass of the material? $\left(\mathrm{K}_{\mathrm{f}}\right.$ for water $=$ $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
(2012)

Ans. (a) (i) The Ratio of number of moles of one component to the total number of moles of solution./ or mathematical expression.
(ii) The Solution which follows Raoult's law over the entire range of concentrations.
(b) $\mathrm{W}_{\mathrm{B}}=15 \mathrm{~g}$

$$
\mathrm{W}_{\mathrm{A}}=450 \mathrm{~g}
$$

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}}=0.34^{\circ} \mathrm{C} \quad \mathrm{~K}_{\mathrm{f}} & =1.86 \mathrm{Kkg} / \mathrm{mol} \quad \mathrm{M}_{\mathrm{B}}=? \\
\mathrm{M}_{\mathrm{B}} & =\frac{1000 \times \mathrm{K}_{\mathrm{f}} \times \mathrm{W}_{\mathrm{B}}}{\Delta \mathrm{~T}_{\mathrm{f}} \times \mathrm{W}_{\mathrm{A}}} \\
& =\frac{1000 \times 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times 15 \mathrm{~g}}{0.34 \mathrm{~K} \times 450 \mathrm{~g}} \\
& =182.35 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

74. (a) Explain the following:
(i) Henry's law about dissolution of a gas in a liquid
(ii) Boiling point elevation constant for a solvent
(b) A solution of glycerol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}\right)$ in water was prepared by dissolving some glycerol in 500 g of water. This solution has a boiling point of $100.42^{\circ} \mathrm{C}$. What mass of glycerol was dissolved to make this solution? $\left(\mathrm{K}_{\mathrm{b}}\right.$ for water $\left.=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$

Ans. (a) (i) The partial pressure of the gas above the liquid is directly proportional to the mole fraction of the gas dissolved in the liquid.
(ii) Boiling Point Elevation Constant: It is equal to elevation in boiling point of 1 molal solution, i.e., 1 mole of solute is dissloved in 1 kg of solvent.
(b) $\mathrm{W}_{\mathrm{B}}=? \quad \mathrm{~W}_{\mathrm{A}}=500 \mathrm{~g} \quad \Delta \mathrm{~T}_{\mathrm{b}}=100.42^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}=0.42^{\circ} \mathrm{C}$ or 0.42 K

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=0.512 \mathrm{Kkg} / \mathrm{mol} \\
& \mathrm{M}_{\mathrm{B}}=92 \mathrm{~g} / \mathrm{mol} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \frac{\mathrm{~W}_{\mathrm{B}} \times 1000}{\mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}} \text { (in grams) }} \\
& \mathrm{W}_{\mathrm{B}}=\frac{\Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{M}_{\mathrm{B}} \times \mathrm{W}_{\mathrm{A}} \text { (in grams) }}{1000 \times \mathrm{K}_{\mathrm{b}}} \\
&=\frac{042{\mathrm{~K} \times 92 \mathrm{~g} \mathrm{~mol}^{-1} \times 500 \mathrm{~kg}}_{1000 \times 0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}}}{100}=37.73 \mathrm{~g}
\end{aligned}
$$

75. (a) Differentiate between molarity and molality for a solution. How does a change in temperature influence their values?
(2011)
(b) Calculate the freezing point of an aqueous solution containing 10.50 g of MgBr_{2} in 200 g of water. (Molar mass of $\mathrm{MgBr}_{2}=184 \mathrm{~g}, \mathrm{Kf}$ for water $=1.86 \mathrm{~K} \mathrm{kgmol}^{-1}$)

Ans. (a) Molality (m) is the number of moles of the solute per kilogram (kg) of the solvent whereas Molarity is the number of moles of solute present in one litre (or one cubic decimeter) of solution at a particular temperature.

Molality is independent of temperature whereas Molarity is function of temperature because volume depends on temperature and the mass does not or Molarity decreases with increase of temperature.
(b) $\Delta \mathrm{T}_{\mathrm{f}}=7.5^{\circ} \mathrm{C}, \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}=3 \times 1.86^{\circ} \mathrm{C} \mathrm{~kg} \mathrm{~mol} \\
& -1 \\
& 0^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{f}}=1.59^{\circ} \mathrm{C} \\
& 184 \mathrm{gmol}^{-1}
\end{aligned} \frac{1000}{200 \mathrm{~kg}}
$$

76. (a) Define the terms osmosis and osmotic pressure. Is the osmotic pressure of a solution a colligative property? Explain.
(b) Calculate the boiling point of a solution prepared by adding 15.00 g of NaCl to 250.0 g of water. (K_{b} for water $=0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, Molar mass of $\mathrm{NaCl}=58.44 \mathrm{~g}$)

Ans. (a) The flow of solvent motecules from solution of low concentration to higher con centration through semipermeable membrane is called osmosis.

The hydrostatic pressure that has to be applied on the solution to prevent the entry of the solvent into the solution through the semipermeable membrane is called the Osmotic Pressure.

Yes, osmotic pressure is a colligative property as it depends upon the number of particles of the solute in a solution.
(b) $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$

$$
\begin{aligned}
\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{0} & =2 \times 0.512 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \times \frac{15 \mathrm{~g}}{58.44 \mathrm{gmol}^{-1}} \times \frac{1000}{250 \mathrm{~kg}} \\
\mathrm{~T}_{\mathrm{b}}-373 \mathrm{~K} & =1.05 \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{b}}=374.05 \mathrm{~K} \text { or } 101.05^{\circ} \mathrm{C}
$$

ENTRANCE CORNER

1. The solubility of N_{2} in water. The vapour pressure of water (in torr) for this aqueous solution is $0.01 \mathrm{~g} \mathrm{~L}^{-1}$. The solubility (in $\mathrm{g} \mathrm{L}^{-1}$) at 750 torr partial pressure is
(a) 0.0075
(b) 0.005
(c) 0.02
(d) 0.015
(2016)
2. The vapour pressure of acetone at $20^{\circ} \mathrm{C}$ is 185 torr . When 1.2 g of non-volatile substance was dissolved in 100 g of acetone at $20^{\circ} \mathrm{C}$, its vapour pressure was 183 torr. The molar mass $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$ of the substance is
(a) 128
(b) 488
(c) 32
(d) 64
(2015)
3. Determination of the molar mass of acetic acid in benzene using freezing point depression is affected by
(2015)
(a) dissociation
(b) association
(c) partial ionization
(d) complex formation
4. Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression?
(a) KCl
(b) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(c) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(2014)
5. The density of a solution prepared by dissolving 120 g of urea (mol.mass $=60 \mu$) in 1000 g of water is $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity of this solution is
(a) 1.78 M
(b) 1.02 M
(c) 2.05 M
(d) 0.50 M
(2012)
6. A 5.2 molal aqueous solution of methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$, is supplied. What is the mole fraction of methyl alcohol in the solution
(a) 0.100
(b) 0.190
(c) 0.086
(d) 0.050
(2012)
7. The van't Hoff factor, i for a compound which undergoes dissociation in one solvent and association in other solvent is respectively
(2011)
(a) less than one and less than one
(b) greater than one and less than one
(c) greater than one and greater than one
(d) less than one and greater than one
8. If sodium sulphate is considerd to be completely dissociated into cations and anions in aqueous solution, the change in freezing point of water $\left(\Delta \mathrm{T}_{f}\right)$, when 0.01 mol of sodium sulphate is dissolved in 1 kg of water, is $\left(\mathrm{K}_{f}=1.86 \mathrm{Kkg} \mathrm{mol}-1\right)$
(a) 0.0186 K
(b) 0.0372 K
(c) 0.0558 K
(d) 0.0744 K
(2010)
9. At $80^{\circ} \mathrm{C}$,the vapour pressure of pure liquid A is 520 mm of Hg and that of pure liquid B is 1000 mm of Hg .If a mixtrure solution of A and B boils at $80^{\circ} \mathrm{C}$ at 1 atm pressure the amount of A in the mixture is ($1 \mathrm{~atm}=760 \mathrm{~mm}$ of Hg)
(2008)
(a) 50 mol percent
(b) 52 mol percent
(c) 34 mol percent
(d) 48 mol percent
10. During osmosis, flow of water through a semipermeable membrane is
(a) from solution having higher concentration only
(b) from both sides of semipermeable membrane with equal flow rates
(c) from both sides of semipermeable membrane with unequal flow rates
(d) from solution having lower concentration only
(2006)
11. A solution of acetone in ethanol
(a) shows a negative deviation from Raoult's law
(b) shows a positive deviation from Raoult's law
(c) behaves like a near ideal solution
(d) obeys Raoult's law
12. The mole fraction of solute in one molal aqueous solution is
(a) 0.027
(b) 0.036
(c) 0.018
(d) 0.009
(2005)
13. Equimolal solutions in the same solvent have
(a) same boiling point but different freezing point
(b) same freezing point but different boiling point
(c) same boiling and same freezing points
(d) different boiling and different freezing points
14. Benzene and toluene form nearly ideal solutions at $20^{\circ} \mathrm{C}$,the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The partial vapour pressure of benzene at $20^{\circ} \mathrm{C}$ for a solution containing 78 g of benzene and 46 g of toluene in torr is
(a) 50
(b) 25
(c) 37.5
(d) 53.5
(2005)
15. Which of the following liquid pairs shows a positive deviation from Raoult's law ?
(a) Water -Hydrochloric acid
(b) Benzene-methanol
(c) Water-nitric acid
(d) Acetone-chloroform
16. If liquids A and B from an ideal solution, the
(a) enthalpy of mixing is zero
(b) entropy of mixing is zero
(c) free energy of mixing is zero
(d) free energy as well as the entropy of mixing are each zero
17. In mixture A and B components show -ve deviation as
(a) $\Delta V_{\text {mix }}>0$
(b) $\Delta \mathrm{H}_{\text {mix }}<0$
(c) $\mathrm{A}-\mathrm{B}$ interaction is weaker than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interaction
(d) $\mathrm{A}-\mathrm{B}$ interaction is stronger than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interaction
(2002)
18. Freezing point of an aqueous solution is $(-0.186)^{\circ} \mathrm{C}$. Elevation of boiling point of the same solution is $\mathrm{K}_{\mathrm{b}}=0.512^{\circ} \mathrm{C} \mathrm{K}_{f}=1.86^{\circ} \mathrm{C}$, find the increase in boiling point.
(a) $0.186^{\circ} \mathrm{C}$
(b) $0.0512^{\circ} \mathrm{C}$
(c) $0.092^{\circ} \mathrm{C}$
(d) $0.2372^{\circ} \mathrm{C}$
(2002)
19. Pure water can be obtained from sea water by
(a) centrifugation
(b) plasmolysis
(c) reverse osmosis
(d) sedimentation
20. The vapour pressure of benzene at a certain temperature is 640 mmHg .A non-volatile and non-electrolyte solid, weighing 2.175 g is added to 39.08 g of benzene .If the vapour pressure of the solution is 600 mm Hg , what is the molecular weight of solid substance?
(a) 49.50
(b) 59.60
(c) 69.40
(d) 79.82
(1999)
21. The volume strength of $1.5 \mathrm{NH}_{2} \mathrm{O}_{2}$ solution is
(a) 4.8
(b) 5.2
(c) 8.4
(d) 8.8
(1997)
22. According to Raoult's law ,relative lowering of vapour pressure of a solution is equal to
(a) moles of solute
(b) moles of solvent
(c) mole fraction of solute
(d) mole fraction of solvent
(1995)
23. Which one is a colligative property?
(1992)
(a) Boiling point
(b) Vapour pressure
(c) Osmotic pressure
(d) Freezing point
24. Blood cells retain their normal shape in solutions which are
(a) hypotonic to blood
(b) isotonic to blood
(c) hypertonic to blood
(d) equinormal to blood
25. An ideal solution is formed when its components
(a) have no volume change on mixing
(b) have no enthalpy change on mixing
(c) have both the above characteristics
(d) have high solubility

ANSWERS

1. (d)	2. (d)	3. (b)	4. (c)	5. (c)
6. (c)	7. (b)	8. (c)	9. (a)	10. (d)
11. (b)	12. (c)	13. (c)	14. (a)	15. (b)
16. (a)	17. (b,d)	18. (b)	19. (c)	20. (c)
21. (c)	22. (c)	23. (c)	24. (b)	25. (c)

১৯১৯১

